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a b s t r a c t

While the cross entropy methodology has been applied to a fair number of combinatorial optimization

problems with a single objective, its adaptation to multiobjective optimization has been sporadic. We develop

a multiobjective optimization cross entropy (MOCE) procedure for combinatorial optimization problems for

which there is a linear relaxation (obtained by ignoring the integrality restrictions) that can be solved in

polynomial time. The presence of a relaxation that can be solved with modest computational time is an

important characteristic of the problems under consideration because our procedure is designed to exploit

relaxed solutions. This is done with a strategy that divides the objective function space into areas and a

mechanism that seeds these areas with relaxed solutions. Our main interest is to tackle problems whose

solutions are represented by binary variables and whose relaxation is a linear program. Our tests with

multiobjective knapsack problems and multiobjective assignment problems show the merit of the proposed

procedure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cross entropy (CE) has a relatively short history in the realm of

optimization methodologies. Rubinstein (1997) developed CE as a

method for estimating probabilities of rare event in complex stochas-

tic networks. Two years later, CE was applied for the first time

in the context of combinatorial optimization, triggering a number

of other operation research applications that are now well docu-

mented (de Boer, Kroese, Mannor, & Rubinstein, 2005a). A fairly

comprehensive list of CE applications and tutorial materials is found

in http://www.cemethod.org. In its most basic form, CE consists of

the repeated execution of the following two steps (de Boer, Kroese,

Mannor, & Rubinstein, 2005b):

1. Generate a random sample from a pre-specified probability distri-

bution function.

2. Use the sample to modify the parameters of the probability

distribution in order to produce a “better” sample in the next

iteration.
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Performance of CE implementations varies according to the rules

(and related parameter values) used to solve the so-called associated

stochastic problem (ASP), which is the problem of estimating the prob-

ability that the objective function of a vector of random variables that

follow a probability distribution function with parameters v exceeds

a given value γ . The problem is solved by generating a sequence of

(v, γ ) values that are adaptively updated from iteration to iteration.

If successful, the search converges to a small neighborhood around

or precisely to the optimal values denoted by (v∗, γ ∗). The CE imple-

mentations in the literature are variants of this process, where most

of the changes consist of the specific rules to obtain (vt+1, γ t+1) in

iteration t + 1 from the values (vt, γ t) in iteration t. The exception

is, perhaps, the adaptation introduced by Laguna, Duarte, and Martí

(2009), where the method is hybridized with the addition of local

search. The main difference between CE and the so-called estimation

of distribution algorithms (EDAs) is the assumption of independence

of the decision variables. In its simplest form, CE attempts to estimate

the probability that at optimality a variable takes on the value of 1,

and it does so by treating each variable independently. This is can be

a disadvantage if variables are strongly correlated, but, on the other

hand, it makes CE very easy to implement and to adjust. Applications

to single objective combinatorial optimization problems have shown

that the methodology can be quite effective even when not directly

addressing the presence of covariance.
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We are aware of only three CE applications in the context of

multiobjective optimization. The first one is the work by Ünveren

and Acan (2007) that tackles the problem of finding efficient fron-

tiers for problems with multiple multimodal objective functions of

continuous variables. They “introduce the notion of clustered non-

dominated solutions on the Pareto front to adapt the probability dis-

tribution parameters” within the CE. In single-objective optimization

problem, the updating of the (v, γ ) values is based on the best (elite)

solutions found in the random sample of the current iteration. In mul-

tiobjective optimization, however, nondominated solutions are found

along the Pareto front, rendering the use of a common set of (v, γ ) val-

ues impractical. This is why Ünveren and Acan (2007) divide the set

of nondominated solutions into clusters and essentially execute one

CE procedure in each cluster. The number of clusters is set to be the

number of objective functions in the problem plus one. The updating

of each set of (v, γ ) values is cluster-dependent and therefore each

CE is responsible for finding the best possible set of nondominated

solutions in its assigned region of the Pareto front (represented by the

cluster).

The CE method applied to each cluster developed by Ünveren

and Acan (2007) is practically identical to the CE Algorithm for Con-

tinuous Optimization described by Kroese, Porotsky and Rubinstein

(2006). In particular, the procedure starts with an initial set of val-

ues for the mean and variance of the decision variables. A sample is

taken from Normal distributions with the appropriate parameters for

each variable. The mean and variances are updated using the elite

solutions in the sample. Finally, a small (epsilon) value is used to

compare the maximum variance and determine whether or not all

variable values in the sample have converged to their correspond-

ing mean. The method is compared to eight existing methods from

the literature using seven well-known optimization problems with

multiple multimodal functions, six with two objective functions and

one with three. The key search parameters are set to a sample of

5000 solutions (per CE) and 1000 iterations. This means that for a bi-

objective problem, the procedure evaluates 5000 × 1000 × 3 = 15

million solutions. A total of 20 million solutions are evaluated in

problems with three objective functions. The authors conclude that

their procedure “performs better than its competitors for most of the

tests cases.” Connor (2008) applies the procedure by Ünveren and

Acan (2007) to a real-world problem with two objective functions. In

this application, ten clusters instead of the recommended three are

employed.

The second multiobjective CE method that we have found in

the literature is due to Perelman, Ostfeld, and Salomons (2008).

Within the field of water resource management, Perelman, Ostfeld

and Salomons address the problem of designing a water distribu-

tion system. Essentially, the problem consists of choosing where

to locate pipes in a water distribution network and also select the

size of the pipes. The single-objective version of the problem at-

tempts to find a design that minimizes the overall construction cost

while satisfying minimum water-pressure requirements at demand-

nodes in the network. This is a classical problem in civil engineer-

ing that dates back to the work by Schaake and Lai (1969) where

a linear programming model was used to find an approximate so-

lution to the New York Tunnels Water Distribution System. Since

then, numerous procedures have been applied to the single-objective

function problem, including metaheuristics (e.g., Lippai, Heaney, &

Laguna, 1999).

The multiobjective optimization version consists of making the

water-pressure requirements a second objective as opposed to a con-

straint. This results in two extreme points, the zero-cost solutions,

where the demands are not satisfied, and the highest cost solution

that corresponds to satisfying all the demands (at a minimum cost).

The first point is obtained trivially. The second requires the solution

of the single-objective problem where the demand requirements are

treated as hard constraints (as explained above). The CE implemen-

tation by Perelman et al. (2008) for the multiobjective optimization

problem uses binary variables to select a pipe size in each location.

Therefore, corresponding to each location, there is a binary vector of

m variables, where m is the number of available pipe diameters (in-

cluding the “zero” or “do nothing” alternative). A value of 1 indicates

the selection of a particular pipe diameter.

In order to identify the elite solutions that will serve as the ba-

sis for updating the CE parameters, the authors invoke the concept

of ranking, introduced by Fonseca and Fleming (1995). The ranking

method assigns a rank value of one to all nondominated solutions.

Dominated solutions are assigned higher rank values corresponding

to the number of solutions that dominate them. In this sense, the rank

method incorporates density information corresponding to different

regions of the Pareto front. The rank values are used to determine the

set of elite solutions in the sample, which in turn become the basis

for updating the (v, γ ) values.

Bekker and Aldrich (2011) propose a multiobjective CE for contin-

uous problems with characteristics that are similar to the one devel-

oped by Perelman et al. (2008) for discrete optimization. The ranking

of solutions is employed as a mechanism for selecting the set of elite

solutions from the sample to update the (v, γ ) values. In particular,

the elite solutions become the basis for constructing empirical proba-

bility distribution functions, one for each variable in the problem. The

size of the sample is set between 30 and 50 times the number of objec-

tive functions in the problem. In the computational experiments with

eight standard problems from the literature the number of function

evaluations is in the order of 10,000, resulting in high-quality fronts

and computational times not exceeding 25 seconds. No comparisons

against other methods are provided but convergence and dispersion

metrics are used to assess the quality of the solutions. One of the

main differences between Bekker and Aldrich (2011) and Perelman

et al. (2008) is the selection of the “elite” solutions from the sample.

While Perelman et al. (2008) use a fixed size throughout the search,

Bekker and Aldrich (2011) use a size that grows over time and that

is controlled by the ranking value (e.g., all solutions with ranking less

than or equal to two may be selected).

2. Multiobjective combinatorial optimization (MOCO) problems

The MOCO problems that we are interested in solving have the

following form:

Maximize f1(x), f2(x), . . . , fm

Subject to x ∈ X

where X represents the set of all feasible solutions and may con-

straint x to take on integer values. As customary in multiobjective

optimization, solution x is said to dominate solution y if fi(x) � fi(y)

for all i and fi(x) > fi(y) for at least one i. We focus on two specific

MOCO problems in order to test our methodology: the multiobjective

knapsack problem and the multiobjective assignment problem.

The multiobjective knapsack problem (MOKP) consists of selecting

a subset of items from a set of n items in order to maximize the utility

(profit) of m different knapsacks without violating their individual

capacities. The profit for knapsack i associated with selecting item j

is given by pij and the corresponding weight is denoted by wij. The

capacity of the ith knapsack is represented by ci. The problem may be

formulated as follows:

Maximize fi(x) =
n∑

j=1

pijxj i = 1, . . . ,m

Subject to

n∑
j=1

wijxj ≤ ci i = 1, . . . ,m

x ∈ {0,1}
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