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a b s t r a c t

Two methods for ranking of solutions of multi objective optimization problems are proposed in this paper.

The methods can be used, e.g. by metaheuristics to select good solutions from a set of non dominated

solutions. They are suitable for population based metaheuristics to limit the size of the population. It is

shown theoretically that the ranking methods possess some interesting properties for such applications.

In particular, it is shown that both methods form a total preorder and are both refinements of the Pareto

dominance relation. An experimental investigation for a multi objective flow shop problem shows that the

use of the new ranking methods in a Population-based Ant Colony Optimization algorithm and in a genetic

algorithm leads to good results when compared to other methods.

© 2014 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Optimization problems with several objectives are common in

industrial, engineering, or scientific contexts. Abstractly formulated, a

multi objective optimization problem asks for solutions from a solution

space X (also called search space) that are optimal with respect to

d > 1 objectives. Typically, the objectives are conflicting and it is only

possible to optimize a (small) subset of the objectives simultaneously.

This is reflected in the concept of the Pareto dominance relation. A

solution dominates another if it is better in at least one objective and

not worse in all other objectives. Based on this relation a solution

is called Pareto optimal if it is not dominated by any other solution

from X. The goal in multi objective optimization is to find the set of

Pareto optimal solutions, called Pareto set, or at least a subset of it.

Unfortunately, many discrete multi objective optimization problems

are NP-hard, i.e. it is not possible to solve them in polynomial time

(if P �= NP). For continuous multi objective optimization problems

the optimization function is often a black box or algebraically too

complicated, i.e. it is impossible to solve them analytically. In these

cases, usually the goal is to find a set of non dominated solutions that

are close to the Pareto optimal solutions. Another common selective

feature is the diversity of the chosen set of solutions.

∗ Corresponding author. Tel.: +49 341 9732275.

E-mail addresses: rmoritz@informatik.uni-leipzig.de (R. L. V. Moritz),

enrico.reich@gmx.de (E. Reich), bernt@informatik.uni-leipzig.de (M. Bernt),

middendorf@informatik.uni-leipzig.de (M. Middendorf).

To explore the solution space the use of algorithms maintaining

a population of solutions seems beneficial. Therefore, multi objective

variants of various population-based metaheuristics have been de-

veloped in recent years. Among the earliest multi objective variants

of genetic algorithms is, e.g. the Vector Evaluation Genetic Algorithm

(VEGA) from Schaffer (1984) (see overviews in Coello Coello, 2009;

Coello Coello, Pulido, & Montes, 2005; Fonseca & Fleming, 1995).

Also the ant colony optimization metaheuristic (ACO) was extended

to solve multi objective optimization problems, e.g. by Iredi, Merkle,

and Middendorf (2001) and Doerner, Hartl, and Reimann (2001)

(for an overview see Angus & Woodward, 2009 or Leguizamón

& Coello Coello, 2011, Chapter 3). For problems on continuous

solution spaces extended particle swarm approaches (PSO) have

been proposed, e.g. by Coello Coello and Salazar Lechuga (2002)

and Hu and Eberhart (2002) (for an overview see Reyes-Sierra &

Coello Coello, 2006).

The Pareto dominance relation is often used in population-based

metaheuristics to rank the elements of a set of solutions. But for

a set of non dominated solutions this relation is insufficient to

guide heuristics into favourable regions of the search space. This is

particularly relevant, when the number of objectives is large since the

number of non dominated solutions increases along with the number

of objectives. This effect has been called a “curse of dimensionality”

by Kukkonen and Lampinen (2007). Therefore, several methods to

compare and rank elements of sets of (non dominated) solutions have

been discussed in the literature. Some of these ranking methods are

used for post-Pareto optimality, i.e. to select solutions from the final

set of non dominated solutions computed by some metaheuristic.
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Aside from ranking the found solutions, there are other methods

to prune a set of (non dominated) solutions. One possibility is to

apply clustering methods to the set of solutions in order to select a

representative solution from each cluster. One potential aim of using

clustering methods is to obtain a large diversity in the set of selected

solutions (Kukkonen & Deb, 2006).

In this paper we are interested in using ranking methods for meta-

heuristics by applying them in each iteration to select only a few

solutions from the set of already found (non dominated) solutions.

Hence, the ranking methods are used to prune a potentially large set

of solutions to a small subset of good solutions. This small set forms

the population which is then used in the next iteration to create new

and hopefully better solutions. Maintaining a small population has

advantages with respect to the memory and time requirements of an

algorithm. This is particularly important in restrictive computational

environments, e.g. when solutions need to be delivered in real time or

the algorithm runs on specific hardware, e.g. as part of an embedded

system. Another important reason for the use of small populations is

objective functions that are expensive to evaluate. Clearly, the choice

of which solutions are to be kept in the population is particularly

important for small population sizes.

The simplest kind of ranking schemes is aggregation methods.

They use, for instance, an aggregation function calculating a weighted

sum of the objectives (Jakob, Gorges-Schleuter, & Blume, 1992) or the

distance to a target vector of objective values (Wienke, Lucasius, &

Kateman, 1992). Furthermore, there are also objective based ranking

methods. One such method is to use given priorities for a lexico-

graphic sorting of the objectives or performing a separate optimiza-

tion of the single objectives in an order that is compliant with the

priorities (Cvetkovic & Parmee, 2002). Weights, target vectors, and

priorities should be given by the user. But for many applications this

might be difficult or impossible for the user because, for instance, no

reasonable weights are known.

In contrast to the above ranking methods that need different kinds

of user input, several methods have been developed based on the no-

tion of dominance. To rank a solution a within a set of solutions X

one could use the number of solutions in X that are dominated by

a (dominance rank) or the number of solutions in X dominating a

(dominance count) (see also Fonseca & Fleming, 1993; Zitzler & Thiele,

1999). An alternative is to use the number of times the current set

of non dominated solutions has to be removed from the remaining

set of solutions until the solution itself becomes non dominated. This

measure has been called dominance depth by Srinivas and Deb (1994).

Additionally to the comparison of single objective vectors also sets of

non dominated solutions can be compared. This is commonly done in

the indicator function framework, which assigns a real value to a set

or sets of non dominated solutions. One example is the binary hyper-

volume indicator that is defined as the hypervolume of the objective

space (i.e. the space of vectors of potential values of the different ob-

jectives) dominated by one set of solutions but not by another (we

refer the interested reader to Zitzler, Thiele, Laumanns, Fonseca, &

da Fonseca, 2003).

Some ranking methods consider how much two solutions differ

with respect to the different objectives. Garza-Fabre, Toscano Pulido,

and Coello Coello (2009) have proposed three such methods. An ex-

ample is the Global Detriment method which computes for each so-

lution the sum of the differences to other solutions over all those

objectives where the solution is worse than the corresponding other

solution. A potential disadvantage of these methods is that they

typically need some normalization between the different objec-

tives. Therefore, these methods are not considered further in this

paper. However, we use one representative of these methods as

a comparison method. This method uses the same measure as

the Global Detriment method, but only for pairwise compari-

son, and random weights for the normalization (for details see

Section 3.2).

By regarding only the information whether two objective values

differ and thereby disregarding the magnitude of the difference of the

objective values the decision process can be greatly simplified. The

number of objectives for which one solution is better or worse than

the other can be helpful for a decision between alternative solutions. A

similar reasoning simplifies everyday decisions when comparing dif-

ferent choices by the number of advantages and disadvantages. This

basic idea was formally captured by the relation favour that prefers a

solution over another if it wins, i.e. is better, in more objectives than

the other (Drechsler, Drechsler, & Becker, 2001). Several extensions

or similar relations have been proposed in the literature. They mod-

ify the decision if an objective is counted as won or lost (Laumanns,

Thiele, Deb, & Zitzler, 2002; Sülflow, Drechsler, & Drechsler, 2007)

or how many won objectives are required for preference (Farina &

Amato, 2004; Zou, Chen, Liu, & Kang, 2008). Approaches based on the

number of won objectives can also be used to rate a solution with

respect to a set of solutions e.g. (Bentley & Wakefield, 1998; Maneer-

atana, Boonlong, & Chaiyaratana, 2006; Mostaghim & Schmeck, 2008).

A detailed description of these methods is given in Section 3.

In this paper we propose two new ranking relations which are

based on the relation favour (Section 4). We prove that both rela-

tions are refinements of the Pareto dominance relation and are to-

tal preorders. The ranking relations can be used in multi objective

population based meta-heuristics for selecting the solutions that are

included into the population and thus guide the search for better so-

lutions. We compare the different ranking schemes when used in a

Population-based Ant Colony Optimization algorithm (P-ACO) and in

a genetic algorithm (GA). As test problem a multi objective flow shop

scheduling problem is used. The results show that the new ranking

schemes are advantageous to select the solutions for the population

of the P-ACO and the GA.

The paper starts with the introduction of basic definitions in

Section 2. A detailed review of related ranking relations from the

literature and a few corresponding theoretical results are presented

in Section 3. The new ranking relations are introduced in Section 4.

The metaheuristics P-ACO and GA which are used for the experiments

are described in Section 5. The test problem and the experiments are

described in Section 6. The experimental results are presented in

Section 7. A short conclusion is given in Section 8. Note, that this pa-

per is an extension of Moritz, Reich, Schwarz, Bernt, and Middendorf

(2013).

2. Basic definitions

Consider a multi objective optimization problem with a set of so-

lutions X and a vector of objective functions �f (a) = ( f1(a), . . . , fd(a)),
where a ∈ X and fi : X �→ R. The solutions in X can, for example, be

vectors of real values in case of continuous optimization problems or

vectors of elements from a finite set in case of combinatorial opti-

mization problems. The aim is to find solutions from X that minimize

the objectives, i.e.

min
a∈X

�f (a) = min
a∈X

(f1(a), . . . , fd(a)). (1)

Note, that by using −fi(a) maximization is also possible.

In order to find a minimum in a two or higher dimensional space

the Pareto dominance relation (≺) is used. Let a, b ∈ X, then

a ≺ b ⇐⇒ ∀i ∈ [1 : d] : fi(a) ≤ fi(b)∧ �f (a) �= �f (b). (2)

Solution a dominates b if a ≺ b. Note that, if a ≺ b then there is at

least one i ∈ [1 : d] with fi(a) < fi(b). Two solutions a, b ∈ X are called

incomparable if a ⊀ b ∧ b ⊀ a or indifferent in case of �f (a) = �f (b). A

solution a ∈ X is called Pareto optimal if �b ∈ X : b ≺ a. A solution a ∈ X

is called non dominated solution with respect to a subset X′ ⊆ X if

�b ∈ X′ : b ≺ a. The set of all Pareto optimal solutions from X is called

the Pareto set and the corresponding set of objective vectors in Rd is

called the Pareto front of X.
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