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a b s t r a c t

Multi-objective optimization problems arise frequently in applications, but can often only be solved approx-

imately by heuristic approaches. Evolutionary algorithms have been widely used to tackle multi-objective

problems. These algorithms use different measures to ensure diversity in the objective space but are not

guided by a formal notion of approximation. We present a framework for evolutionary multi-objective opti-

mization that allows to work with a formal notion of approximation. This approximation-guided evolutionary

algorithm (AGE) has a worst-case runtime linear in the number of objectives and works with an archive that

is an approximation of the non-dominated objective vectors seen during the run of the algorithm. Our ex-

perimental results show that AGE finds competitive or better solutions not only regarding the achieved

approximation, but also regarding the total hypervolume. For all considered test problems, even for many

(i.e., more than ten) dimensions, AGE discovers a good approximation of the Pareto front. This is not the

case for established algorithms such as NSGA-II, SPEA2, and SMS-EMOA. In this paper we compare AGE with

two additional algorithms that use very fast hypervolume-approximations to guide their search. This signifi-

cantly speeds up the runtime of the hypervolume-based algorithms, which now allows a comparison of the

underlying selection schemes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Real-world optimization problems are usually very complex and

hard to solve due to different circumstances such as constraints, com-

plex function evaluations that can only be done by simulations, or

multiple objectives. Most real-world optimization problems are char-

acterized by multiple objectives. As these objectives are often in con-

flict with each other, the goal of solving a multi-objective optimization

(MOO) problem is to find a (not too large) set of compromise solutions.

The so-called Pareto front of a MOO problem consists of the function

values representing the different trade-offs with respect to the given

objective functions. The set of compromise solutions that is the out-

come of a MOO run is an approximation of this Pareto front, and the

idea of this posteriori approach is that afterwards the decision maker

selects an efficient solution from this set. Multi-objective optimiza-

tion is regarded to be more (or at least as) difficult as single-objective

optimization due to the task of computing several solutions. From a

computational complexity point of view even simple single-objective

problems on weighted graphs like shortest paths or minimum span-
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ning trees become NP-hard when they encounter at least two weight

functions (Ehrgott, 2005). In addition, the size of the Pareto front is

often exponential for discrete problems and even infinite for contin-

uous ones.

Due to the hardness of almost all interesting multi-objective prob-

lems, different heuristic approaches have been used to tackle them.

Among these methods, evolutionary algorithms are frequently used.

They work at each time step with a set of solutions called population.

The population of an evolutionary algorithm for a MOO is used to

store desired trade-off solutions for the given problem.

As the size of the Pareto front is often very large, evolutionary

algorithms and all other algorithms for MOO have to restrict them-

selves to a smaller set of solutions. This set of solutions should be a

good approximation of the Pareto front. The main question is now

how to define approximation. The literature (see e.g. Deb, 2001) on

evolutionary multi-objective optimization (EMO) just states that the

set of compromise solutions (i) should be close to the true Pareto

front, (ii) should cover the complete Pareto front, and (iii) should be

uniformly distributed. There are different evolutionary algorithms for

multi-objective optimization such as NSGA-II (Deb, Pratap, Agrawal, &

Meyarivan, 2002), SPEA2 (Zitzler, Laumanns, & Thiele, 2002), or IBEA

(Zitzler & Künzli, 2004), which try to achieve these goals by preferring

diverse sets of non-dominated solutions.
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However, the above notion of approximation is not a formal def-

inition. Having no formal definition of approximation makes it hard

to evaluate and compare algorithms for MOO problems. Therefore,

we think that it is necessary to use a formal definition of approxi-

mation in this context and evaluate algorithms with respect to this

definition.

Different formal notions of approximation have been used to eval-

uate the quality of algorithms for multi-objective problems from a

theoretical point of view. The most common ones are the multi-

plicative and additive approximations (see Cheng, Janiak, & Kovalyov,

1998; Daskalakis, Diakonikolas, & Yannakakis, 2010; Diakonikolas &

Yannakakis, 2009; Papadimitriou & Yannakakis, 2000, 2001; Vassilvit-

skii & Yannakakis, 2005). Laumanns, Thiele, Deb, and Zitzler (2002)

have incorporated this notion of approximation in an evolutionary

algorithm for MOO. However, this algorithm is mainly of theoretical

interest as the desired approximation is determined by a parameter

of the algorithm and is not improved over time. Another approach

related to a formal notion of approximation is the popular hypervol-

ume indicator (Zitzler & Thiele, 1999) that measures the volume of

the dominated portion of the objective space. Hypervolume-based

algorithms such as MO-CMA-ES (Igel, Hansen, & Roth, 2007) or SMS-

EMOA (Beume, Naujoks, & Emmerich, 2007) are well-established for

solving MOO problems. They do not use a formal notion of approxi-

mation but it has recently been shown that the worst-case approx-

imation obtained by optimal hypervolume distributions is asymp-

totically equivalent to the best worst-case approximation achievable

by all sets of the same size (Bringmann & Friedrich, 2010b, 2010c).

The major drawback of the hypervolume approach is that it cannot

be computed in time polynomial in the number of objectives unless

P = NP (Bringmann & Friedrich, 2010a). It is even NP-hard to deter-

mine which individual gives approximately the least contribution to

the total hypervolume (Bringmann & Friedrich, 2012).

We introduce an efficient framework of an evolutionary algorithm

for MOO that works with a formal notion of approximation and im-

proves the approximation quality during its iterative process. The

algorithm can be applied to a wide range of notions of approximation

that are formally defined. As the algorithm does not have complete

knowledge about the true Pareto front, it uses the best knowledge

obtained so far during the optimization process.

The intuition for our algorithm is as follows. During the optimiza-

tion process, the current best set of compromise solutions (usually

called “population”) gets closer and closer to the Pareto front. Simi-

larly, the set of all non-dominated points seen so far in the objective

space (we call this “archive”) is getting closer to the Pareto front. Ad-

ditionally, the archive is getting larger and larger and becoming an

increasingly good approximation of the true Pareto front. Assuming

that the archive approximates the Pareto front, we then measure the

quality of the population by its approximation with respect to the

archive. In our algorithm

• any set of feasible solutions constitutes an (potentially bad) ap-

proximation of the true Pareto front, and
• we optimize the approximation with respect to all solutions seen

so far.

We introduce a basic approximation guided evolutionary algo-

rithm which already performs very well for problems with many

objectives. One drawback of the basic approach is that the archive

size might grow tremendously during the run of the algorithm. In

order to deal with this, we propose to work with an approximative

archive which keeps at each time step only an ε-approximation of all

solutions seen so far. We do this by incorporating the ε-dominance

approach of Laumanns et al. (2002) into the algorithm. Furthermore,

we introduce a powerful parent selection scheme which especially

increases the performance of our algorithm for problems with just a

few objectives by given the algorithm a stronger focus on the extreme

points on the Pareto front.

We show on a set of well established benchmark problems that

our approach is highly successful in obtaining high quality approxi-

mations according to the formal definition. Comparing our results to

state of the art multi-objective algorithms such as NSGA-II, SPEA2,

IBEA, and SMS-EMOA, we show that our algorithm typically gives

better results, especially for high dimensional problems.

In our experimental study, we measure the quality of the results

obtained not only in terms of the approximation quality but also with

respect to the achieved hypervolume. Our experiments show that the

examined hypervolume-based algorithms can sometimes achieve a

larger hypervolume than our algorithm AGE, but AGE is the only one

considered that finds a competitive hypervolume for all functions.

Hence our algorithm not only performs better regarding our formal

definition of approximation on problems with many objectives, but it

is also competitive (or better, depending on the function) regarding

the hypervolume.

This article is based on its previous conference publications. The

based AGE algorithm has been introduced in Bringmann, Friedrich,

Neumann, and Wagner (2011). The archive approximation has been

presented in Wagner and Neumann (2013) and different parent selec-

tion schemes for AGE have been examined and discussed in Wagner

and Friedrich (2013).

The outline of this paper is as follows. We introduce some ba-

sic definitions in Section 2. The main idea of approximation guided

evolution and the basic AGE algorithm are presented in Section 3. In

Section 6 we show how to speed up the approach by using an ap-

proximative archive and discuss different parent selection schemes

in Section 5. We present our experimental results in Section 8 and

finish with a summary and some concluding remarks.

2. Preliminaries

Multi-objective optimization deals with the optimization of sev-

eral (often conflicting) objective functions. The different objective

functions usually constitute a minimization or maximization problem

on their own. Optimizing with respect to all given objective functions,

there is usually no single optimal objective function vector, but a set

of vectors representing the different trade-offs that are imposed by

the objective functions.

Without loss of generality, we consider minimization problems

with d objective functions, where d ≥ 2 holds. Each objective function

fi : S �→ R, 1 ≤ i ≤ d, maps from the considered search space S into the

real values. In order to simplify the presentation we only work with

the dominance relation on the objective space and mention that this

relation transfers to the corresponding elements of S.

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd), with x, y ∈ Rd

we define the following dominance relation:

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d,

x ≺ y :⇔ x � y and x �= y.

The typical notions of approximation used in theoretical computer

science are multiplicative and additive approximation. We use the

following definition

Definition 1. For finite sets S, T ⊂ Rd, the additive approximation of

T with respect to S is defined as

α(S, T) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

In this paper, we only consider additive approximations. However,

our approach can be easily adapted to multiplicative approximations.

In this case, the term si − ti in Definition 1 has to be replaced by si/ti.

3. Basic algorithm

Our aim is to minimize the additive approximation value of the

population P we output with respect to the archive A of all points
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