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a b s t r a c t

The primary objective in the one-dimensional cutting stock problem is to minimize material cost. In real

applications it is often necessary to consider auxiliary objectives, one of which is to reduce the number

of different cutting patterns (setups). This paper first presents an integer linear programming model to

minimize the sum of material and setup costs over a given pattern set, and then describes a sequential

grouping procedure to generate the patterns in the set. Two sets of benchmark instances are used in the

computational test. The results indicate that the approach is efficient in improving the solution quality.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the classical one-dimensional cutting stock problem (CSP), m

item types with lengths
(
l1, . . . , lm

)
and demands

(
d1, . . . , dm

)
are cut

from stock bars of length L to minimize material cost. The solution is

a cutting plan that contains a set of different cutting patterns, each of

which has specified frequency. The primary objective in the CSP is to

minimize material cost. Auxiliary objectives (costs) exist in real-life

production (Cherri, Arenales, Yanasse, Poldi, & Vianna, 2014; Kallrath,

Rebennack, Kallrath, & Kusche, 2014), one of which is pattern reduc-

tion. It is necessary to adjust the positions of the cutting tools in the

cutting machine each time a new pattern is set up. Reducing the pat-

tern count (the number of different cutting patterns) of the cutting

plan is useful to decrease setup cost, especially for the cases where

setup cost is high. A typical case is the cutting of a large steel slab,

where the cutting tools have large size, changing their positions incurs

much additional cost and setup time.

A heuristic is presented in this paper for the CSP with pattern

reduction (CSPPR). It solves the CSPPR in two stages. In the first stage,

it calls a sequential grouping procedure (SGP) to generate a set of

patterns. In the second stage, it uses the CPLEX optimizer to solve

an integer linear programming (ILP) model that minimizes the sum

of material and setup costs over the given pattern set. The proposed

algorithm is called the SGPIP to denote that the SGP is used in the

first stage to generate the patterns and an integer programing model

(IP) is solved in the second stage over the patterns. Computational
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test is performed on two sets of benchmark instances to compare the

algorithms for the CSPPR. The results show that the SGPIP yields the

best average solution quality.

The remaining contents are arranged as follows. The literature is

reviewed in the next section. The ILP model that minimizes the sum

of material and setup costs over a given pattern set is established in

Section 3, together with the general frame of the SGPIP. The SGP for

generating the patterns in the pattern set is presented in Section 4.

Computational results are reported in Section 5 and conclusions are

given in the last section.

2. Literature review

A simple literature review for the CSPPR is given in this section. A

similar review can be found in Cui and Liu (2011).

An exact approach is presented in Vanderbeck (2000). It formu-

lates the CSPPR as a quadratic integer programming problem. The

objective is to minimize the pattern count, given the minimum num-

ber of bars required to meet the item demands. Sixteen practical

instances were used in the experimental test, where the number of

item types ranges from 5 to 32. Only 12 instances were solved to opti-

mality because of the computation time limit (2 h per instance). This

indicates that the approach is adequate for solving small instances.

Approximate algorithms that are based on the sequential heuris-

tic procedure (SHP) are widely used to solve the CSPPR. The SHP in

Haessler (1975) selects a pattern that satisfies the aspiration levels of

trim loss and frequency. It is based on the observation that increasing

the frequency of the current pattern is often useful for pattern reduc-

tion. The SHP in Vahrenkamp (1996) uses the same idea, where the

current pattern is chosen from 200 patterns obtained from random
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bin packing. The algorithms in Cui, Zhao, Yang, and Yu (2008) and Cui

and Liu (2011) generate the current pattern using a subset of the re-

maining items. This subset is determined to maximize the frequency

of the current pattern, observing the constraint that both the num-

ber of included item types and the total length of the included items

should not be smaller than the specified thresholds. Dikili, Sariöz, and

Pek (2007) solved the CSPPR in two-stages. A simple heuristic gen-

erates a large set of cutting patterns in the first stage. In the second

stage, a SHP selects some of the first-stage patterns to form the cutting

plan.

The heuristic approach in Foerster and Wäscher (2000) solves the

CSPPR in two stages. A cutting plan is generated at the first stage with-

out considering pattern reduction. A pattern combination method is

used for pattern reduction at the second stage. It iteratively combines

two patterns to 1, 3 to 2 and 4 to 3, until the pattern count cannot be

reduced further.

The heuristic approach presented in Umetani, Yagiura, and Ibaraki

(2003) allows both surplus and shortage of the item types. It can-

not solve the CSPPR of this paper because the CSPPR does not allow

shortage of the items and takes surplus as waste. Their approach and

the computational results will not be further commented for this

reason.

A hybrid heuristic method is available in Yanasse and Limeira

(2006). It solves the CSPPR in three stages. A SHP generates some pat-

terns in the cutting plan at the first stage, subject to the constraint

that each pattern must fulfill the demands of at least two item types.

A residual problem is formed after all such patterns have been gen-

erated. It is also solved by the SHP without considering the previous

constraint. The patterns of the first two stages form the complete cut-

ting plan. The pattern combination method in Foerster and Wäscher

(2000) is used at the third stage to reduce the pattern count further.

Belov and Scheithauer (2003) proposed an integer programming

model for pattern reduction, and developed a branch-and-price algo-

rithm to solve the model. The computational results show that the

algorithm outperforms that of Foerster and Wäscher (2000) in solu-

tion quality. Later the authors extended the algorithm to deal with

both pattern reduction and open stacks minimization (Belov & Schei-

thauer, 2007).

Mobasher and Ekici (2013) developed a mixed integer linear pro-

gram model and proposed two local search algorithms and a column

generation based heuristic algorithm.

Cui, Yang, Zhao, Tang, and Yin (2013) presented a sequential

grouping heuristic for the two-dimensional cutting stock problem

with pattern reduction, where sequential means that the patterns in

a cutting plan are generated sequentially and grouping indicates that

each next pattern is obtained from considering only the items in a

selected subset of the remaining items. The idea will be used in this

paper to design the SGP to generate the patterns.

This paper formulates the CSPPR as an ILP that minimizes the

sum of material and setup costs over a given pattern set. The pro-

posed algorithm SGPIP first calls the SGP to generate the patterns in

the set, and then uses the CPLEX optimizer to solve the ILP over the

set. The approach is heuristic because not all possible patterns are

considered. Computational test on two sets of benchmark instances

is performed to compare the algorithms for the CSPPR. The results

show that the SGPIP performs the best in improving the solution

quality.

Recently, a pattern-set generation algorithm (PSG) for the one-

dimensional multiple stock sizes cutting stock problem is presented

in Cui, Cui, and Zhao (2014). It also generates a set of patterns in the

first stage and solves an ILP model over the generated patterns in the

second stage. It differs from the SGPIP mainly in the following aspects:

(1) The PSG uses a residual heuristic to generate the patterns in the

first stage, whereas the SGPIP uses the SGP to obtain the patterns.

The computational results later reported in Section 5.3 indicate that

the residual heuristic used by the PSG may not be effective in pattern

reduction. (2) The ILP model solved by the PSG does not consider

pattern reduction.

3. ILP model and general frame of the algorithm SGPIP

The following notations are used:

ZILP objective value (sum of material and setup costs)

Q set of patterns, Q = {Q1, . . . , QN}
N number of patterns in Q

ub cost per bar

us cost per setup (cost of each new pattern)

xj frequency of pattern Qj

εj 0/1 variable denoting whether Qj is used (εj = 1) or not

(εj = 0)

qij number of type−i items in pattern Qj

M upper bound of pattern frequency, M = ∑m
i=1 di

I set of non-negative integers

The ILP model for the CSPPR is as follows:

ZILP = min

(
ub

∑N

j=1
xj + us

∑N

j=1
εj

)
(1-1)

∑N

j=1
q

ij
xj ≥ di, i = 1, . . . , m (1-2)

xj ≤ Mεj, j = 1, . . . , N (1-3)

xj ∈ I, εj ∈ {0, 1} , j = 1, . . . , N

Formula (1-1) means that the objective is to minimize the sum of

material and setup costs. Constraint (1-2) indicates that the item

demands must be meet. Constraint (1)–(3) guarantees that pattern

Qj can be used only when εj = 1. Although M = ∑m
i=1 di is used in

the computational test of this paper, it can be defined depending on

pattern j (xj ≤ Mjεj, Mj = max{�di/q
ij
�|i : qij > 0}) to get possibly

stronger restrictions.

The SGPIP of this paper solves the ILP model in two stages. In the

first stage, it calls the SGP (described in the next section) to generate

the patterns in Q . Meanwhile a stage-one solution is obtained. In the

second stage, it uses the CPLEX optimizer as optimization engine to

solve the ILP model to obtain the stage-two solution. The stage-two

solution may be not optimal (over set Q) because a limit is placed on

the computation time. Hence the better one of the two solutions is

selected.

4. Procedure SGP for generating the patterns

4.1. Steps of the SGP

Procedure SGP is called by the SGPIP in the first stage to gener-

ate the patterns in set Q and to obtain the stage-one solution. The

following notations are used to describe it:

Z cost of the current cutting plan

ZSGP cost of the best cutting plan obtained in performing the SGP.

It is also the cost of the stage-one solution when the SGP is

finished

G ID of the current generation

Gmax number of maximum generations

P current pattern, P = (p1, . . . , pm)
ri remaining demand of type-i items, i = 1, . . . , m

bi maximum number of type-i items that can be used for gen-

erating the current pattern P, i = 1, . . . , m.

ci value of a type-i item

αG grouping parameter for generation G, G = 1, . . . , Gmax.

βG grouping parameter for generation G, G = 1, . . . , Gmax.
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