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Research Highlights

• A capital allocation scheme for coherent risk
measures has been suggested.

• It returns the unique solution for every coherent
risk measure.

• The resulting capital allocation is linear and di-
versifying.

• The method can be applied to fair division in op-
timal risk sharing problems.

Abstract

A capital allocation scheme for a company that has a
random total profit Y and uses a coherent risk measure
ρ has been suggested. The scheme returns a unique
real number Λ∗ρ(X ,Y ), which determines the capital
that should be allocated to company’s subsidiary with
random profit X . The resulting capital allocation is lin-
ear and diversifying as defined by Kalkbrener (2005).
The problem is reduced to selecting the “center” of a
non-empty convex weakly compact subset of a Banach
space, and the solution to the latter problem proposed
by Lim (1981) has been used. Our scheme can also be
applied to selecting the unique Pareto optimal alloca-
tion in a wide class of optimal risk sharing problems.
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1 Introduction

One of the basic problems in risk management is to
determine the allocation of risk capital among agents
or business units. We make two assumptions: (i) a
company consists of n subsidiaries, each contributing

a random profit Xi, so that the total profit of the com-
pany is Y ∗=∑n

i=1 Xi, and (ii) the company has decided,
or is required by a regulator, to reserve a risk capi-
tal ρ(Y ∗), to compensate possible loss, where ρ(.) is a
fixed risk measure. The capital allocation problem is
to distribute ρ(Y ∗) among subsidiaries, that is, to as-
sign subsidiary i the capital ki with ∑n

i=1 ki = ρ(Y ∗).
The numbers ki are called risk contributions of Xi to
the Y ∗.

If ρ(Y ∗)≤ ∑n
i=1 ρ(Xi), it is possible to find a capital

allocation such that ki ≤ ρ(Xi), i = 1, . . . ,n. This corre-
sponds to the intuition of diversification: the risks pro-
duced by subsidiaries partially compensate each other,
which allows one to reduce the risk contribution of
each of them. If ρ(Y ∗) = ∑n

i=1 ρ(Xi), such an allo-
cation is unique and given by ki = ρ(Xi), i = 1, . . . ,n.
The capital allocation problem can be formulated as
follows.

Problem I Assume that ρ(Y ∗)< ∑n
i=1 ρ(Xi), so that a

capital allocation satisfying ki ≤ ρ(Xi), i = 1, . . . ,n is
not unique. Which one to choose?

The capital allocation problem in this or similar
form has been extensively studied in a number of pa-
pers, see eg. Denault (2001), Fisher (2003), Delbaen
(2004), Kalkbrener (2005), Cherny and Orlov (2011)
and references therein. We rely on a natural assump-
tion (see Kalkbrener (2005)), that the risk contribution
ki of subsidiary i depends only on Xi and Y ∗, but not
on the decomposition of Y ∗−Xi among the rest of sub-
sidiaries. In this context, a capital allocation with re-
spect to risk measure ρ(.) is just a function of two ar-
guments Λρ(X ,Y ), such that Λρ(Y,Y ) = ρ(Y ). With
ki = Λρ(Xi,Y ∗), the requirements (i) ∑n

i=1 ki = ρ(Y ∗)
and (ii) ki ≤ ρ(Xi), i = 1, . . . ,n can now be rewritten as

(i) (Linearity) Λρ(X ,Y ) is a linear functional in the
first argument;
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