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a b s t r a c t

Facility dispersion problems involve placing a number of facilities as far apart from each other as possible. Four

different criteria of facility dispersal have been proposed in the literature (Erkut & Neuman, 1991). Despite

their formal differences, these four classic dispersion objectives can be expressed in a unified model called

the partial-sum dispersion model (Lei & Church, 2013). In this paper, we focus on the unweighted partial sum

dispersion problem and introduce an efficient formulation for this generalized dispersion problem based on

a construct by Ogryczak and Tamir (2003). We also present a fast branch-and-bound based exact algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Facility dispersion problems involve maximizing the separation

between facilities to minimize the negative impact they have on each

other, minimize potential interaction among hazardous facilities, or

enhance the reliability of service and logistic systems. Facility dis-

persal can be used in a variety of applications including military de-

fense, franchise location, transportation of hazardous materials, lay-

out planning for explosive chemicals (Curtin & Church, 2006) and

telecommunication network design (Kim, 2012). Curtin and Church

(2007) demonstrate that patterns in the classic central place theory

can be replicated using facility dispersal. Facility dispersal has also

been deemed as a means to promote the robustness and reliability

of critical facilities when it is integrated with other classic location

models (Maliszewski, Kuby, & Horner, 2012).

To capture the dispersive quality in different applications, multiple

models for facility dispersal have been proposed. Four basic constructs

have been developed in the literature to disperse facilities from each

other. The first was suggested by Shier (1977) in which p-facilities

are located while maximizing the minimum distance separating any

two facilities. This problem has been called the p-dispersion problem

(Moon & Chaudhry, 1984) and has also been termed the Max–Min–

Min problem (Erkut & Neuman, 1991). Moon and Chaudhry (1984)

proposed a second form of facility dispersal, which involved defin-

ing the minimum separation distance for each located facility. They

proposed to locate p-facilities in order to maximize the sum of these

minimum separation distances. Moon and Chaudhry called this the
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p-defense problem and Erkut and Neuman classified this problem

as a Max–Sum–Min, as this involves MAXimizing the SUM of MIN-

imum separation distances. Kuby (1987) introduced a third form of

p-facility dispersal that he called p-dispersion sum. This problem in-

volved maximizing the sum of all separation distances, which has

been called the Max–Sum–Sum problem as it involves MAXimizing

the SUM (over each facility) of SUMs (the sum of all separations dis-

tances for that facility) (Erkut & Neuman, 1991). The last of the four

classic facility location dispersal problems was suggested by Erkut and

Neuman (1991). This problem deals with the location of p-facilities

while maximizing the smallest of the facility defined sums (a facil-

ity sum represents the sum of separation distances from a specific

facility location to all other facilities) and has been classified as the

Max–Min–Sum problem (Erkut & Neuman, 1991).

Curtin and Church (2006) added a new dimension to facility dis-

persal by conceptualizing a multi-type dispersion metric recognizing

that the extent to which two facilities ought to be dispersed should

depend on their types. The strength of interaction between facili-

ties is modeled using both the traditional separation distance and a

type-specific “repulsion” factor in which a smaller repulsion measure

reflects a stronger inter-facility interaction. Curtin and Church devel-

oped four dispersion models based on the four basic dispersion met-

rics classified in Erkut and Neuman (1991) and the multi-type metric

where each multi-type dispersion model is a multi-type extension of

a classic dispersion model.

Fernández, Kalcsics, and Nickel (2013) proposed an extended dis-

persion problem involving locating multiple groups of facilities and

applied the multi-group dispersion model to the location of recycling

facilities. A dispersion metric corresponding to the Max–Min–Min

criterion is maximized for each group of facilities. To ensure even dis-

tribution of workload, each facility is assigned a weight value and the

sum of weights for each group is constrained to be within a range of
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a pre-specified target weight value. Equity issues in dispersion mod-

eling have also been addressed in Prokopyev, Kong, and Martinez-

Torres (2009).

Dispersion problems are related to the maximum independent

set problem and the maximum clique problem in graph theory. The

p-dispersion problem, for example, can be reduced to the maximum

independent set problem by removing edges longer than a given

length r and find the maximum independent set on the converted

graph (Erkut, 1990). The p-dispersion problem can be solved by solv-

ing a series of maximum independent set problems with increasing r

values until the size of the maximum independent set is p. Solution

methods for the maximum independent set problem have been ex-

plored by many researchers. Feo, Resende, and Smith (1994) proposed

a parallel Greedy Randomized Adaptive Search Procedure (GRASP) for

the maximum independent set problem and found it to be superior

in performance to tabu search and simulated annealing methods. Hifi

(1997) developed a genetic algorithm for the weighted maximum

independent set program, which can be used also to solve equiva-

lent problems such as the maximum clique problem. Gamarnik and

Goldberg (2010) presented complexity results of greedy randomized

algorithms on constant degree regular graphs.

With few exceptions, the majority of research on facility disper-

sion in the past two decades has involved the four basic dispersion

models classified by Erkut and Neuman (1991). Lei and Church (2013)

recently proposed a generalized dispersion model based on the con-

cept of partial sums. At the individual facility level, the partial-sum

dispersion metric involves accounting for the sum of the smallest L

distances to neighboring facilities, weighted by a set of propulsion

factors that can be used, for example, to emphasize the interaction

of closely located facilities. At the system level, the model considers

the sum of the K smallest facility-defined partial sums. This gen-

eral construct is called the MaxPSumPSum problem (where PSum

stands for partial sum). Lei and Church provided an integer linear pro-

gramming formulation of this general partial-sum dispersion prob-

lem based on assignment variables which tracked specific separation

distances.

The partial sum dispersion metric is a compromise of the one-or-

all approach found in the four basic dispersion models and makes

more sense in modeling many types of inter-facility interactions. For

example, in franchise branch location, stores from the same franchise

chain should be located away from each other to minimize cannibal-

ization within the same organization. However, existing dispersion

models either considers competition from the nearest store and ig-

nores competition from other nearby stores, or considers competition

from all stores in the franchise chain including remote sites that have

little effect on a store. It would make more sense to consider a number

of closest stores using the partial-sum dispersion metric. As another

example, in military defense, it is common wisdom to locate assets

such as missile silos apart from one another to minimize the chance

that two facilities are destroyed at the same time. However, if avoid-

ing the simultaneous loss of two facilities leads to low average spacing

between sites, from management’s perspective, it may be desirable

to devise a facility layout that minimizes the chance of losing three

or more facilities simultaneously.

From a theoretical point of view, the MaxPSumPSum construct

unifies all four classic dispersion models as special case problems.

This means that the MaxPSumPSum problem not only defines a fam-

ily of new (PSum) dispersion models, but also makes it possible to

solve all four existing facility dispersal problems as special case in-

stances. It should be noted that partial-sum dispersion should not be

confused with similar partial-sum metrics in median location prob-

lems, which involve minimizing partial sums of demand-to-facility

distances either at the individual facility level (Weaver & Church,

1985) or at the system level (Nickel & Puerto, 1999). The reader is

referred to Lei and Church (2014) for a median location problem that

considers such location criteria in a unified construct.

Facility dispersion problems often have high computational com-

plexities. It is well-known that both the p-dispersion problem and the

p-dispersion sum problem are NP-hard (see e.g. Erkut, 1990; Pisinger,

2006). In addition, no polynomial-time heuristic procedure (or ap-

proximation algorithm) can guarantee to obtain a near optimal solu-

tion for the p-dispersion problem that is within any fixed percentage

of the optimal value (Tamir, 1991). In the special case where the sep-

aration distances satisfy the triangle inequality, a heuristic for the

p-dispersion problem exists with an approximation ratio of 2 (Tamir,

1991) and this ratio is the best possible (Ravi, Rosenkrantz, & Tayi,

1994). An approximation algorithm for the p-dispersion sum prob-

lem also exists with an approximation ratio of 4 (Ravi et al., 1994).

Since it subsumes the four classic dispersion problems as special-

cases, the generalized dispersion problem should have a computa-

tional complexity that is no less than the special-case problems. Lei

and Church (2013) report high computation costs of the generalized

dispersion problem in their experiments. Certain medium-sized in-

stances of the MaxPSumPSum problem cannot be solved using their

ILP formulation in hours. In fact, one example presented in Lei and

Church (2013) involving 55 candidate sites and locating 10 dispersive

facilities took a week and half to solve. In many applications, such

high computational costs may well prevent the model from being

applied in practical analysis.

This article aims at operationalizing the generalized dispersion

model by developing improved model formulations and efficient, spe-

cialized solution procedures. In particular, we focus on a special case

of the partial-sum dispersion model defined without the propulsion

factors. It should be noted that this version of the partial-sum disper-

sion problem is still very general because the four classic dispersion

models are defined without the propulsion factors and therefore are

its special cases. To avoid ambiguity, we refer to the general partial-

sum dispersion problem as the weighted partial-sum dispersion prob-

lem and the version without propulsion factors as the unweighted

partial-sum dispersion problem. We demonstrate that a compact and

efficient formulation of the unweighted partial-sum dispersion model

can be developed by using a linear program by Ogryczak and Tamir

(2003) twice within the model formulation. Our computational ex-

periments show that for the same problem instances solved by Lei

and Church (2013), the new formulation can solve the partial disper-

sion problems faster in a majority of the cases. Moreover, we develop

and present an interchange heuristic inspired by Teitz and Bart (1968)

in conjunction with a branch and bound search, which are orders of

magnitude faster than the integer linear programming approach. As

will be shown in the experiment section, the branch and bound pro-

cedure can solve the same 55-node problem instance that took the ILP

formulations a week and a half in about 3 minutes, which makes the

partial-sum dispersion model suitable for location analysis in day-to-

day operations.

2. Model formulation

The unweighted partial-sum dispersion problem can be formally

defined as follows:

Locate a set of p facilities such that the sum of K worst-case facility-

based sum of distances is maximized, where each facility-based sum of

distances is the partial sum of L smallest distances from its neighboring

facilities.

To illustrate the concept of the partial sum dispersion problem,

consider the following example in Fig. 1, in which three dispersive

facilities are located among five candidate sites using a partial sum

dispersion metric with K = 1, and L = 2. In the example, the co-

ordinates for candidate sites (from A to E) are labeled. Distances be-

tween sites (in Table 1) are Euclidean distance rounded to the nearest

integer.
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