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a b s t r a c t

We consider a family of composite bivariate distributions, or probability mass functions (pmfs), with uniform

marginals for simulating optimization-problem instances. For every possible population correlation, except

the extreme values, there are an infinite number of valid joint distributions in this family. We quantify the

entropy for all member distributions, including the special cases under independence and both extreme

correlations. Greater variety is expected across optimization-problem instances simulated based on a high-

entropy pmf. We present a closed-form solution to the problem of finding the joint pmf that maximizes

entropy for a specified population correlation, and we show that this entropy-maximizing pmf belongs to

our family of pmfs. We introduce the entropy range as a secondary indicator of the variety of instances that

may be generated for a particular correlation. Finally, we discuss how to systematically control entropy and

correlation to simulate a set of synthetic problem instances that includes challenging examples and examples

with realistic characteristics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The simulation, or random generation, of optimization-problem

instances with a target population correlation between the values of

two types of coefficients, for example, the objective-function and con-

straint coefficients in the 0-1 Knapsack Problem (KP01), is a primary

motivation for this research. To thoroughly evaluate the performance

of any algorithm or heuristic, researchers must attempt to solve a con-

vincing number of diverse problem instances that, hopefully, includes

challenging and realistic examples. Our work leads to suggestions for

simulating collections of such synthetic problem instances.

Bartz-Beielstein, Chiarandini, Paquete, and Preuss (2010) includes

excellent papers that underscore the importance of statistics in con-

ducting and interpreting experiments on optimization procedures.

Our research contributes to both statistics and operations research

by complementing previous empirical experimentation with funda-

mental results that facilitate better analysis and understanding of

the performances of optimization solution methods, another primary

motivation for our research.
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Our principal contributions here are quantifying entropy for a

complete family of composite probability mass functions (pmfs) with

uniform marginal distributions, identifying the pmf that maximizes

entropy for a specified correlation, and explaining how to system-

atically control entropy and coefficient correlation when simulating

optimization-problem instances with explicit correlation induction

(ECI). ECI allows experimenters to simulate instances based on any

possible population correlation (Reilly, 1991, 2009). We explain how

ECI also allows experimenters to simulate instances based on the full

range of possible entropy values for any correlation level.

Suppose that Y1 and Y2 are discrete random variables representing

the values of two types of coefficients in an optimization problem. The

entropy associated with a joint distribution, or pmf f (y1, y2), for the

random variable (Y1, Y2),

Hf = −E(ln(f (Y1, Y2))) = −
∑

y1

∑
y2

f (y1, y2) ln(f (y1, y2)),

measures the uncertainty associated with (Y1, Y2) under f (y1, y2).
With any specified marginal distributions for Y1 and Y2, entropy is

maximized when Y1 and Y2 are independent (Shannon, 1949). Co-

efficients in synthetic problem instances simulated based on a low-

entropy pmf may exhibit patterns among values (y1, y2) of (Y1, Y2)
and, as a result, less than desired variety may be apparent across

those instances. So generally speaking, we anticipate that a wider
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variety of synthetic problem instances may be simulated based

on a high-entropy distribution for a target population correlation

ρ = Corr(Y1, Y2).
We expect that coefficients in many optimization problems en-

countered in practice are correlated. For example, it would make

sense that activities associated with more resource units would be

the activities that bring more profit. Computational studies on sim-

ulated instances of classical optimization problems, including KP01

(see, for example, Martello, Pisinger, & Toth, 1999, 2000; Martello &

Toth, 1979, 1987,1988,1997; Pisinger, 1997), the Generalized Assign-

ment Problem (GAP) (Amini & Racer, 1994; Cario et al., 2002; Martello

& Toth, 1981), the Capital Budgeting (or Multidimensional Knapsack)

Problem (Fréville & Plateau, 1994, 1996; Hill & Reilly, 2000b), and

the Set Covering Problem (Rushmeier & Nemhauser, 1993; Sapkota &

Reilly, 2011), show that correlation between key types of coefficients

affects the performances of algorithms and heuristics. Based on re-

sults in Cario et al. (2002), there appears to be a relationship between

the relative entropy of the joint distribution of GAP objective-function

and capacity-constraint coefficient values and the performances of

algorithms and heuristics. If entropy plays a significant role in the

performances of algorithms and heuristics, experimenters may learn

more about the capabilities and limitations of solution methods when

they systematically control the entropy associated with the joint dis-

tribution(s) of coefficient values and the correlation between impor-

tant coefficient types. However, heretofore entropy appears to have

received little attention as a controllable factor in computational ex-

periments with optimization methods.

Many experimenters use ad hoc implicit correlation-induction

(ICI) procedures when simulating correlated coefficients in synthetic

optimization-problem instances. The user-specified values of an ICI

procedure’s parameters imply the population-correlation level and

determine the joint pmf of coefficient values. Under ECI, an alterna-

tive to ICI, users specify either marginal distributions of coefficient

values and a target population correlation or a joint distribution of

coefficient values. ECI overcomes the principal shortcomings of ICI

(Reilly, 2009).

In this paper we provide closed-form expressions for the entropy

associated with a family of composite pmfs for (Y1, Y2), where Y1 and

Y2 are uniform random variables and ρ is specified. We consider how

entropy is affected by the target correlation and the smallest joint

probability value over the support of (Y1, Y2), or the relative entropy.

The performances of optimization methods may be affected by the

correlation-induction approach, as well as by the selection of joint

pmfs (Cario et al., 2002). The distribution-selection criterion that we

consider here for ECI is maximum entropy, principally because of

the greater variety that is expected across the resulting synthetic

problem instances. We formulate and solve a convex program to find

the maximum-entropy pmf for (Y1, Y2) when ρ is specified. For all

possible values of ρ , the maximum-entropy pmf belongs to our family

of composite distributions.

Our paper is organized as follows. Background information about

ICI and ECI problem-generation approaches, especially for KP01, is

presented in the next section, along with material on the Factored

Transportation Problem. We introduce the first entropy expressions

for our family of composite pmfs under ECI in Section 3; some special

cases are considered in Section 4. In Section 5, we present a convex

programming model to find the maximum-entropy distribution for

a discrete bivariate random variable with uniform marginals and a

target population correlation. Closed-form solutions that satisfy the

Karush–Kuhn–Tucker necessary and sufficient optimality conditions

are presented for all possible target correlation values. In Section 6,

we introduce the entropy range as a secondary indicator of the va-

riety of optimization-problem instances that may be simulated for a

particular correlation. The last section contains some discussion and

recommendations for further research.

2. Background

In this section, we review ICI and ECI approaches for simulating co-

efficients in synthetic instances of optimization problems, particularly

KP01. The Factored Transportation Problem has important implica-

tions for simulating coefficients for synthetic optimization-problem

instances with ECI.

2.1. Simulating coefficients in synthetic optimization-problem instances

KP01 may be represented as follows:

Maximize

n∑
j=1

pjxj

Subject to

n∑
j=1

wjxj ≤ b

xj ∈ {0, 1}, j = 1, 2, . . . , n,

(KP01)

where all pj > 0, all 0 < wj < b, and
∑n

j=1 wj > b. Kelleher, Pferschy,

and Pisinger (2004) presents an extensive survey of exact and heuris-

tic solution methods for KP01 and several knapsack variants.

Let P be the random variable representing the values of the

objective-function coefficients and W be the random variable rep-

resenting the values of the constraint coefficients. Also let ν be a pos-

itive integer and δ and γ be non-negative integers. A flexible KP01

problem simulator modeled after those outlined in the literature (e.g.,

see Balas & Zemel, 1980; Martello et al., 1999, 2000; Martello & Toth,

1979, 1987,1988,1997; and Pisinger, 1997) is:

wj ← W ∼ U {1, 2, . . . , η}
tj ← T ∼ U {−δ,−δ + 1, . . . , δ}
pj = wj + tj + γ

Reilly (1997, 2009) shows that:

ρ = Corr(W, P) =
√

η2 − 1

η2 + 4δ(δ + 1)− 1
.

However, quantification of the correlation implied under ICI is rare.

The implied correlation ρ > 0 is usually loosely classified as “weak”

if δ > 0 and γ = 0; as “strong” if δ = 0 and γ ≥ 0; and as “almost

strong” if δ > 0 and γ > 0. Additionally, the correlation level is con-

founded with the marginal distributions of coefficient values, making

it impossible to systematically vary correlation alone when simulat-

ing KP01 instances. A similar problem simulator may be used if KP01

instances with negatively correlated coefficients are desired (e.g., see

Cario et al., 2002 or Martello and Toth, 1981).

ICI problem simulators have also been developed for other classi-

cal optimization problems, including GAP, the Capital Budgeting (or

Multi-Dimensional Knapsack) Problem, and the Set Covering Problem.

Reilly (2009) examines example ICI simulators for these problems. Ad-

ditionally, ICI has been used to simulate instances of single-machine

scheduling problems (John, 1989; Potts & Van Wassenhove, 1988,

1992).

Alternatively, a joint pmf for KP01 coefficient values may be de-

fined based on specified marginal distributions for the objective-

function and constraint coefficient values and a target population cor-

relation. Reilly (1991, 1993) proposes a family of joint pmfs for
(
W, P

)
indexed by two parameters: ρ and θ = minij{Pr(W = wi, P = pj)}, the

smallest joint probability over the support of
(
W, P

)
. These pmfs may

be referred to as parametric mixtures (e.g., see Cario et al., 2002).

Under such an ECI approach, correlation may be varied and system-

atically controlled without affecting or being confounded with the

marginal distributions of coefficient values (Reilly, 2009). Hall and

Posner (2010) recommend principles and properties for designing

problem simulators to avoid unintended biases in the instances’ co-

efficients and in the conclusions drawn from experiments with those
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