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a b s t r a c t

In this paper we study a classical parallel machine scheduling model with m machines and n jobs, where each

job is either accepted and then processed by one of the machines, or rejected and then a rejection penalty

is paid. The objective is to minimize the completion time of the last accepted job plus the total penalty of

all rejected jobs. The scheduling problem is known to be NP-hard in the strong sense. We find some new

optimal properties and develop an O(n log n + n/ε) heuristic to solve the problem with a worst-case bound

of 1.5 + ε, where ε > 0 can be any small given constant. This improves upon the worst-case bound 2 − 1
m

of

the heuristic presented by Bartal et al. (Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., & Stougie,

L. (2000). Multiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics, 13, 64–78) in the

scheduling literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Machine scheduling with rejection (also named “order acceptance

and scheduling”) has attracted considerable attention from schedul-

ing researchers as well as production managers who practice it in

the past a few decades. One important application of scheduling with

rejection arises in make-to-order production systems with limited

production capacity or tight delivery requirements, where order re-

jection and scheduling decisions have to be made simultaneously

(Cesaret, Oguz, & Salman, 2012). In practice, due to production capac-

ity constraints and short delivery due dates, a typical manufacturer

may have to reject some orders which have long processing times

but contribute relatively small profits. Another important application

of scheduling with rejection occurs in scheduling when outsourcing

is an alternative option (Shabtay, Gaspar, & Kaspi, 2013). Schedul-

ing with rejection combines outsourcing and production scheduling

decisions together.

Machine scheduling with rejection (MSR) has been studied ex-

tensively in the scheduling literature. Most of the MSR models are

considered in the single-machine environment (e.g., Zhang, Lu, &

Yuan, 2009; Lu, Cheng, Yuan, & Zhang, 2009; Talla Nobibon & Leus,

2011; Oguz, Salman, & Yalcin, 2010; Lee & Sung, 2008; Slotnick &

Morton, 1996; Slotnick & Morton, 2007; Zhong, Ou, & Wang, 2014,

among others), or study on-line scheduling (e.g., Bartal, Leonardi, &
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Marchetti-Spaccamela, 2000; Seiden, 2001; Hoogeveen, Skutella, &

Skutella, 2003; Epstein, Noga, & Woeginger, 2002, among others).

MSR models with industrial applications are studied by Cheng and

Sun (2009), Guerrero and Kern (1988), Cesaret et al. (2012), and Rom

and Slotnick (2009), among others. Excellent literature review arti-

cles on MSR are provided by Slotnick (2011) and Shabtay et al. (2013)

recently.

In this paper, we study a basic off-line parallel-machine MSR

model. Bartal et al. (2000) are the first to introduce parallel machine

scheduling models with rejection, where each job is either accepted

and then processed by one of the machines, or rejected and then a

rejection penalty is paid. The objective function is to minimize the

makespan of all accepted jobs (i.e., the completion time of the last

accepted job) plus the total rejection penalty of all rejected jobs. They

study both the on-line model and the off-line model. For the on-

line model, they present an on-line algorithm with the best-possible

competitive ratio of 2.618. For the off-line model, they develop an

O(n log n) heuristic with a worst-case bound of 2 − 1
m (here n is the

number of jobs, while m is the number of machines), and present

a fully polynomial-time approximation scheme (FPTAS) for the case

when m is fixed, and a polynomial-time approximation scheme (PTAS)

for the case when m is arbitrary. The running time complexity of their

FPTAS is O((n/ε)m), while the running time complexity of their PTAS

is O((n3/ε)9/ε2
), where ε > 0 can be any small given constant. Note

that such a PTAS has a running time complexity of O(n27)when ε = 1.

Thus, it is interesting to develop efficient heuristics with a better

performance ratio to solve the off-line model, especially for the gen-

eral case when m is arbitrary. Surprisingly, in terms of developing

fast heuristics, the worst-case bound of 2 − 1
m for the general off-line
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model in Bartal et al. (2000) is the best known result in the schedul-

ing literature (see the very recent review papers Slotnick (2011);

Shabtay et al. (2013)). In this paper, we study the off-line model in

Bartal et al. (2000) for the general case when m is arbitrary, and

present an O(n log n + n/ε) heuristic with a worst-case bound of

1.5 + ε.

The scheduling problem we study can be described formally

as follows: We are given a set of m identical parallel machines

M = {M1, M2, . . . , Mm} and a set of n > m jobs J = {J1, J2, . . . , Jn}. As-

sociated with each job Jj is a processing time pj > 0 and a rejection

penalty wj > 0. Job Jj is either rejected and then a rejection penalty wj

is paid, or accepted and then processed by one of the m machines. Job

preemption is not allowed during job processing, and each machine is

available for processing jobs at time zero. Each machine can process

at most one job at a time. Denote A ⊆ J as the set of jobs to be ac-

cepted, and R = J \ A as the set of jobs to be rejected. Denote Cj as the

completion time of job Jj on a machine if Jj ∈ A. The objective is to de-

termine A and a feasible schedule for the jobs in A on the m machines,

so as to minimize objective function Z = maxJj∈A{Cj} + ∑
Jj∈R wj, i.e.,

the makespan of all accepted jobs plus the total rejection penalty

of all rejected jobs. We denote P|rej|Cmax + ∑
wj as the scheduling

problem.

Note that the classical parallel machine scheduling problem

P||Cmax is a special case of problem P|rej|Cmax + ∑
wj when wj = +∞

for j = 1, 2, . . . , n. Problem P||Cmax is known to be NP-hard in the

strong sense (Garey & Johnson, 1979). Therefore, P|rej|Cmax + ∑
wj is

also NP-hard in the strong sense. It is also well-known that problem

P||Cmax can be solved by some simple heuristics with constant worst-

case bounds. For examples, the list schedule has a worst-case bound

of 2 − 1
m , and the longest-processing-time-first (LPT) rule has a worst-

case bound of 4
3 − 1

3m (see Pinedo, 2012 for more details and more

heuristics). However, when job rejection is allowed, it becomes much

more complicated to design efficient heuristics with low running time

complexity and good worst-case bounds. In this paper we focus on

developing an efficient heuristic to solve problem P|rej|Cmax + ∑
wj

with near-linear time complexity.

2. Heuristic

We will present a heuristic H to solve problem P|rej|Cmax + ∑
wj

in this section. Heuristic H is shown to have a worst-case bound of

1.5 + ε and running time complexity of O(n log n + n/ε).
Denote σ ∗ as the optimal solution, A∗ as the set of all accepted

jobs in σ ∗, R∗ = J \ A∗ as the set of all rejected jobs in σ ∗, C∗
max as the

completion time of the last accepted jobs in A∗ (i.e., the makespan

of all accepted jobs) in σ ∗, and Z∗ = C∗
max + ∑

Jj∈R∗ wj as the objective

function value of σ ∗. Let H0 be the O(n log n) heuristic presented by

Bartal et al. (2000), and let Z0 be the value of the solution generated

by H0. In our heuristic H, we first apply H0 to generate solution value

Z0. By Theorem 5.1 on page 73 in Bartal et al. (2000), we have

Z∗ ≤ Z0 ≤
(

2 − 1

m

)
Z∗. (1)

According to Bartal et al. (2000), we also have the following property.

Lemma 1. If C∗
max ≤ 1

2 Z∗, then Z0 ≤ 1.5Z∗.

Proof. By the proof of Theorem 5.1 on page 73 in Bartal et al. (2000),

we have

Z0 ≤ Z∗ +
(

1 − 1

m

)
C∗

max.

Thus, if C∗
max ≤ 1

2 Z∗, then

Z0 ≤ Z∗ +
(

1 − 1

m

)
· C∗

max ≤ Z∗ +
(

1 − 1

m

)
· 1

2
· Z∗ ≤ 1.5Z∗.

By Lemma 1, to make sure heuristic H having a worst-case bound

of 1.5 + ε, we only need to consider the situation when

C∗
max >

1

2
Z∗ >

1

4
Z0. (2)

In the remaining of this section, we only consider the situation when

inequality (2) is satisfied.

Let ε be any small constant such that 1
ε is a positive integer, and

let ε ′ = ε
3 . For t = 0, 1, . . . , 1

ε′ , we define

Ĉt = t · (ε ′ · Z0).

Clearly, by (1) and (2), there exists some integer κ ∈ {1, 2, . . . , 1
ε′ } such

that

Ĉκ−1 = (κ − 1) · (ε ′ · Z0) < C∗
max ≤ κ · (ε ′ · Z0) = Ĉκ . (3)

By (1) and (3), Ĉκ is an upper bound of C∗
max such that

C∗
max ≤ Ĉκ = (κ − 1) · ε ′ · Z0 + ε ′ · Z0 < C∗

max + ε ′ · (2Z∗)

= C∗
max + 2

3
· ε · Z∗. (4)

Note that the exact value of κ is unknown. In heuristic H we need to

consider all of the 1
ε′ values Ĉ1, Ĉ2, . . . , Ĉ 1

ε′
.

We now introduce the major idea flow of heuristic H. In H

we need to determine the 1
ε′ values Ĉ1, Ĉ2, . . . , Ĉ 1

ε′
. Provided Ĉt

(t = 1, 2, . . . , 1
ε′ ), we will determine value Z̃t , where Z̃t is an upper

bound of the objective function value of some feasible solution that

can be constructed based on the value of Ĉt . As what we will show it

later, each value Z̃t can be determined in O(n) time, and the value of

Z̃κ is bounded by (1.5 + ε)Z∗ (remember that Ĉκ is an upper bound of

C∗
max satisfying (4), but we do not know the exact value of κ , although

it exists). We then find out the index ξ ∈ {1, 2, . . . , 1
ε′ } such that

Z̃ξ = min

{
Z̃t | t = 1, 2, . . . ,

1

ε ′

}
.

We have

Z̃ξ ≤ Z̃κ ≤ (1.5 + ε)Z∗.

Finally, provided ξ and Ĉξ , a feasible solution with a solution value no

more than Z̃ξ is generated by H. Thus, the generated solution value

by H is bounded by Z̃ξ ≤ (1.5 + ε)Z∗. Here we would like to point out

that it is unnecessary to know what is the exact value of κ as long as

we are able to determine Z̃1, Z̃2, . . . , Z̃ 1
ε′

and the value of ξ .

It is challenging in H to determine value Z̃t for each t = 1, 2, . . . , 1
ε′

in O(n) time. The major idea of how to determine Z̃t is as follows. Pro-

vided the value of Ĉt , we will find out a job set A′
t ⊆ J such that all jobs

in A′
t can be scheduled on the m machines with a makespan no more

than 1.5Ĉt (the total processing time of jobs in A′
t is approximately

equal to m · Ĉt). To reduce total rejection penalty, we give priority to

those jobs with a high value of wj/pj or wj when selecting jobs to A′
t .

The value of Z̃t is given to be

Z̃t = 1.5Ĉt +
∑

Jj∈J\A′
t

wj.

Clearly, provided job set A′
t , there exists some feasible solution σ̂t in

which all jobs in A′
t are accepted while all jobs in J \ A′

t are rejected,

and the corresponding solution value of σ̂t is no more than Z̃t . As what

we will show it later, when Ĉt = Ĉκ , the generated job set A′
κ satisfies

∑
Jj∈J\A′

κ

wj ≤ 1.5
∑
Jj∈R∗

wj.

This indicates that there exists a feasible solution σ̂κ in which all jobs

in A′
κ are accepted and scheduled on the machines with a makespan



Download English Version:

https://daneshyari.com/en/article/6896853

Download Persian Version:

https://daneshyari.com/article/6896853

Daneshyari.com

https://daneshyari.com/en/article/6896853
https://daneshyari.com/article/6896853
https://daneshyari.com

