
European Journal of Operational Research 241 (2015) 674–685

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Dynamic reduction heuristics for the rectangle packing area

minimization problem ✩

Kun He a, Pengli Ji a,∗, Chumin Li a,b

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
b School of Computer Science and Technology, University of Picardie Jules Verne, Amiens 80039, France

a r t i c l e i n f o

Article history:

Received 7 October 2013

Accepted 21 September 2014

Available online 2 October 2014

Keywords:

Packing

Floorplanning

Layout optimization

Area minimization

Open dimension problem

a b s t r a c t

The rectangle packing area minimization problem is a key sub-problem of floorplanning in VLSI design. This

problem places a set of axis aligned two-dimensional rectangular items of given sizes onto a rectangular

plane such that no two items overlap and the area of the enveloping rectangle is minimized. This paper

presents a dynamic reduction algorithm that transforms an instance of the original problem to a series of

instances of the rectangle packing problem by dynamically determining the dimensions of the enveloping

rectangle. We define an injury degree to evaluate the possible negative impact for candidate placements,

and we propose a least injury first approach for solving the rectangle packing problem. Next, we incorporate

a compacting approach to compact the resulting layout by alternatively moving the items left and down

toward a bottom-left corner such that we may obtain a smaller enveloping rectangle. We also show the

feasibility, compactness, non-inferiority, and halting properties of the compacting approach. Comprehensive

experiments were conducted on 11 MCNC and GSRC benchmarks and 28 instances reported in the literature.

The experimental results show the high efficiency and effectiveness of the proposed dynamic reduction

algorithm, especially on large-scale instances with hundreds of items.

© 2014 Published by Elsevier B.V.

1. Introduction

The rectangle packing area minimization problem (RPAMP) is an

NP-hard problem. It aims to place all the axis-aligned rectangular

items of known sizes onto a plane completely and without overlap-

ping to minimize the area of the enveloping rectangle. As a subprob-

lem of floorplanning, the RPAMP has important applications in the

area of VLSI design. For the floorplanning problem, we are given a set

of rectangular modules and a net list specifying the interconnections

among the modules. The goal is to find a feasible layout the same as

RPAMP, such that the area of the enveloping rectangle and the total

length of the interconnections among the modules is minimized.

Basically, there are two main approaches to the RPAMP: (1) a

heuristic searching method based on layout representations and

(2) a reduction method that transforms an instance of the RPAMP

to a series of instances of the strip packing problem (SPP) or the

rectangle packing problem (RPP). The RPAMP is a two-variable open

dimension problem (Wäscher, Haus̈ner, & Schumann, 2007), while

✩ This work was supported by the National Science Foundation of China under Grants

61472147, 61173180 and 61272014.
∗ Corresponding author. Tel.: +86 27 1867 233 1252; fax: +86 27 87545004.

E-mail addresses: brooklet60@gmail.com (K. He), jipengli8@gmail.com (P. Ji),

chu-min.li@u-picardie.fr (C. Li).

the SPP and the RPP are a one-variable open dimension problem and

a two-dimensional (2D) knapsack problem. In addition to the search-

ing method and the reduction method, other methods such as branch

and bound (Chan & Markov, 2004), linear optimization (Kim & Kim,

2003) are also used to solve the RPAMP.

Layout representation is one of the most important techniques

used in the first approach, as it determines the size of the searching

space and the complexity of transformation between a representation

and the corresponding layout. Layout representation can be classified

into slicing representation and nonslicing representation. The layout

coded by slicing representation should satisfy guillotine cutting, so

slicing representation may miss optimal layouts; meanwhile, non-

slicing representation can cover all the optimal layouts. Hence it is

commonly believed that nonslicing representation can yield better

results than slicing representation.

Numerous representations have been put forward in the past

two decades, and there are four classical nonslicing representations.

Murata, Fujiyoshi, Nakatake, and Kajitani (1996) proposed a sequence

pair representation that used two sequences to represent the geo-

metric relation of the items, placed the items on a grid structure,

and constructed the corresponding constraint graphs to evaluate the

objective function. Lin and Chang (2005) presented a transitive con-

straint graph (TCG) by using two transitive closure graphs to identify

the geometric relation of the items. TCG is equivalent to sequence

http://dx.doi.org/10.1016/j.ejor.2014.09.042

0377-2217/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ejor.2014.09.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.09.042&domain=pdf
http://dx.doi.org.org/10.13039/501100001809
mailto:brooklet60@gmail.com
mailto:jipengli8@gmail.com
mailto:chu-min.li@u-picardie.fr
http://dx.doi.org/10.1016/j.ejor.2014.09.042


K. He et al. / European Journal of Operational Research 241 (2015) 674–685 675

pair because they share the same O((n!)2) solution space and there

is a bijective mapping between them. Two representations based on

tree structure, O-tree (Guo, Cheng, & Yoshimura, 1999) and B*-tree

(Chang, Chang, Wu, & Wu, 2000), are the most widely used represen-

tations, because their solution space is in the size of O(n!22n−2/n1.5),
which is the lowest complexity reported in the literature. B*-tree

uses a binary ordered tree, while O-tree uses an ordered tree with an

arbitrary vertex degree. Therefore, B*-tree is faster and easier to im-

plement. Chang et al. (2000) presented the comparisons and analyses

on different representations.

Simulated annealing (SA; Chen & Chang, 2006; Chen & Yoshimura,

2008; Chen, Zhu, & Ali, 2011; Pisinger, 2007) is the most popular

searching strategy for the RPAMP, while memetic algorithm (MA;

Tang & Yao, 2007), particle swarm optimization (PSO; Chen, Guo, &

Chen, 2010) and local search (Imahori, Yagiura, & Ibaraki, 2005; Li, Li,

& Zhou, 2010) have also been adopted by researchers. To reduce the

searching complexity of SA, Fast-SA (Chen & Chang, 2006) integrated

a random search with hill-climbing that divided the annealing pro-

cess into three stages: the high-temperature random search stage,

the pseudo-greedy local search stage, and the hill-climbing search

stage. By enumerating all the possible inserted positions in the se-

quence pairs for a selected item, Chen and Yoshimura (2008) applied

an insertion after remove (IAR) method to accelerate the SA. Chen

et al. (2011) presented a hybrid simulated annealing (HSA) method

based on a new operation on B*-tree. Tang and Yao (2007) proposed a

memetic algorithm (MA) that used an effective genetic search method

to explore the search space and an efficient local search method to

exploit information in the search region.

The main idea of the second approach is to construct a set of can-

didate widths or heights of the enveloping rectangle to transform an

RPAMP instance into a series of instances of the RPP or the SPP and

then to design algorithms for the RPP and the SPP. Because various

reduction methods adopt similar approaches to constructing candi-

date dimensions of the enveloping rectangle, the design of the reduc-

tion method focuses on seeking efficient RPP and SPP algorithms. By

combining an improved least flexibility first principle and a greedy

search, Wu and Chan (2005) introduced a deterministic optimization

algorithm for the RPP. Based on the conceptions of corner action and

smooth degree, He, Huang, and Jin (2012) proposed a best fit algo-

rithm (BFA) for the RPP. Bortfeldt and Gehring (2001) proposed a

hybrid genetic algorithm to generate layout with a layer-type struc-

ture for the RPP. To solve the SPP, (Leung, Zhang, & Sim, 2011) sug-

gested a two-stage intelligent search algorithm that first constructed

a solution greedily, then improved the solution by a local search and

a simulated annealing algorithm. Bortfeldt (2006) introduced a layer

building method best fit decreasing height* (BFDH*) algorithm, which

worked without any encoding of solutions, but fully defined layouts

are manipulated by means of specific genetic operators.

In this paper, we develop a dynamic reduction algorithm (DRA) for

the RPAMP. First, DRA uses a constructive method (Bortfeldt, 2013) to

generate a set of candidate widths for the enveloping rectangle and

initializes a promising filling rate (the filling rate = the area of all the

placed items divided by the area of the enveloping rectangle). Then,

at each iteration, it constructs an RPP instance based on the current

width dynamically selected from the candidate widths and current

promising filling rate. Then, it uses a least injury first (LIF) algorithm,

which is an algorithm developed from the BFA (He et al., 2012), to

calculate the generated RPP instance. If LIF can place all the items on

the enveloping rectangle, then we move all the items toward the left

and bottom iteratively to adjust the obtained layout to a compact one.

This process is repeated until the promising filling rate can no longer

be improved. Fig. 1 shows the flow chart of LIF.

We implemented DRA and tested it on 11 MCNC (Microelectronic

Center of North Carolina) and GSRC (Gigascale Systems Research Cen-

ter) benchmarks and four other RPAMP benchmarks proposed by

Imahori et al. (2005). The experimental results showed that DRA ren-

Fig. 1. The flow chart of DRA.

ovated the current best results on eight instances. At the same time it

also matched the current best results on the other three instances.

Then, we ran DRA on 24 RPAMP instances proposed by Bortfeldt

(2013), and DRA renovated results on 10 of 12 instances having 200

items.

The subsequent sections are organized as follows. Section 2 gives

a formal statement on the problem definition. Section 3 introduces

the LIF algorithm. Section 4 describes the compacting algorithm, and

DRA is introduced in detail in Section 5. Empirical studies on the DRA

are presented in Section 6, and the conclusions are presented in the

end.

2. Problem statement

Given a set of n rectangular items with each item i (1 ≤ i ≤ n)

having width wi and height hi, the RPAMP requires determining a

feasible arrangement of all the items on a larger rectangular plane

with variable dimensions. The objective is to minimize the area of the

enveloping rectangle (hereafter abbreviated as sheet). Let the sheet

be embedded in the first quadrant of a 2D Cartesian reference frame

in such a way that the bottom-left vertex coincides with the origin.

For each item i, let (xi1, yi1) and (xi2, yi2) denote the coordinates of the

bottom-left and upper-right vertexes, respectively. Let width wc and

height hc represent the two dimensions of the sheet. Then, RPAMP

can be formulated as follows:

min wchc

s.t.

(1) (xi2 − xi1, yi2 − yi1) ∈ {(wi, hi), (hi, wi)}
(2) max(xi1 − xj2, xj1 − xi2, yi1 − yj2, yj1 − yi2) ≥ 0

(3) 0 ≤ xik ≤ wc, 0 ≤ yik ≤ hc, k ∈ {1, 2}
In constraints (1)–(3), i, j apply to 1, 2, . . . , n and i �= j. Constraint

(1) implies that each item should be placed orthogonally on the

sheet; constraint (2) indicates that no overlap occurs between any

two items; and constraint (3) means all the items are placed com-

pletely on the sheet.



Download English Version:

https://daneshyari.com/en/article/6896855

Download Persian Version:

https://daneshyari.com/article/6896855

Daneshyari.com

https://daneshyari.com/en/article/6896855
https://daneshyari.com/article/6896855
https://daneshyari.com

