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a b s t r a c t

The Linear Ordering Problem is a popular combinatorial optimisation problem which has been extensively

addressed in the literature. However, in spite of its popularity, little is known about the characteristics of

this problem. This paper studies a procedure to extract static information from an instance of the problem,

and proposes a method to incorporate the obtained knowledge in order to improve the performance of

local search-based algorithms. The procedure introduced identifies the positions where the indexes cannot

generate local optima for the insert neighbourhood, and thus global optima solutions. This information is then

used to propose a restricted insert neighbourhood that discards the insert operations which move indexes to

positions where optimal solutions are not generated.

In order to measure the efficiency of the proposed restricted insert neighbourhood system, two state-of-the-

art algorithms for the LOP that include local search procedures have been modified. Conducted experiments

confirm that the restricted versions of the algorithms outperform the classical designs systematically when

a maximum number of function evaluations is considered as the stopping criterion. The statistical test

included in the experimentation reports significant differences in all the cases, which validates the efficiency

of our proposal. Moreover, additional experiments comparing the execution times reveal that the restricted

approaches are faster than their counterparts for most of the instances.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Linear Ordering Problem (LOP) is a classical combinatorial op-

timisation problem which has received the attention of the research

community since it was studied for the first time by Chenery and

Watanabe (1958). Garey and Johnson (1979) demonstrated that the

LOP is an NP-hard problem, thereby evidencing the difficulty of solving

the LOP instances up to the optimality. However, due to its numerous

applications in diverse fields such as archeology (Glover, Klastorin, &

Klingman, 1972), economics (Leontief, 2008), graph theory (Charon &

Hudry, 2007), machine translation (Tromble & Eisner, 2009) or math-

ematical psychology (Kemeny, 1959), we can find a wide variety of

papers that have dealt with the LOP by means of exact, heuristic and

metaheuristic strategies.

Among the exact methods, the most meaningful include

Branch and Bound (Kaas, 1981; Charon & Hudry, 2006), Branch

and Cut (Grötschel, Jünger, & Reinelt, 1984) and Cutting Plane

algorithms (Mitchell & Borchers, 1996, 2000). These methods,

as Schiavinotto and Stützle (2004) highlighted, behave competitively
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for instances from specific benchmarks with up to a few hundred

columns and rows. However their computation time increases

strongly with the size of the instances, and thus, it is not possible

to solve large instances in a reasonable time span. Beyond the

exact proposals, pioneering works proposed constructive heuris-

tics (Chenery & Watanabe, 1958; Aujac, 1960; Becker, 1967). Such

approaches were later outperformed by the advances produced in

metaheuristic optimisation. Proof of this are the solutions based on

Local Search (Kernighan & Lin, 1970; Chanas & Kobylanski, 1996), Ge-

netic Algorithms (Charon & Hudry, 1998), Genetic Programming (Pop

& Matei, 2012), Tabu Search (Laguna, Marti, & Campos, 1999),

Scatter Search (Campos, Glover, Laguna, & Martí, 2001), Variable

Neighborhood Search (Garcia, Pérez-Brito, Campos, & Martí, 2006),

Ant Colony Optimisation (Chira, Pintea, Crisan, & Dumitrescu, 2009;

Pintea, Crisan, Chira, & Dumitrescu, 2009), and recently Estimation

of Distribution Algorithms (Ceberio, Mendiburu, & Lozano, 2013).

According to a recent review of Martí, Reinelt, and Duarte (2012),

the Memetic Algorithm (MA) and the Iterated Local Search (ILS) pro-

posed by Schiavinotto and Stützle (2004), are the algorithms that

currently shape the state-of-the-art of the LOP. The MA is a hybrid

algorithm which combines the canonical structure of a Genetic Al-

gorithm with a high presence of local search procedures, either in

the initialisation of the population or in the evolutionary process it-

self. On the other hand, the ILS is a strategy that iteratively applies
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a local search algorithm to a single solution. When the process gets

trapped in a local optimum solution, the ILS applies a perturbation

to the current solution, and continues with the optimisation process

until a termination criterion is satisfied. Both algorithms include an

efficient implementation of a greedy local search algorithm with the

insert neighbourhood designed specifically to solve the LOP.

As seen for most of the combinatorial optimisation problems, the

hardness of solving a specific instance is not only limited to the size

of this, but also to other additional parameters, unknown in most

cases. In this regard, the community has tried to better understand

the characteristics of the LOP that determine the difficulty of the

instances, and, similarly, has tried to identify the features that could be

useful to guide the algorithms throughout the optimisation process. In

this sense, Schiavinotto and Stützle (2004) sketched out the properties

that could somehow characterise the hardness of the LOP instances.

The authors defined the sparsity, variation coefficient (VC), skewness

and fitness distance correlation as measures of instance hardness, and

showed that real-life instances, which are apparently more difficult

than artificial ones, present significant differences in sparsity, VC and

skewness with respect to random benchmark instances. Nevertheless,

the relation between the mentioned properties, and the suitability of

the MA and the ILS to solve the LOP is not straightforward.

In the same research line, Betzler, Guo, Komusiewicz, and Nie-

dermeier (2011) published a detailed work on the parameterised

complexity for intractable median problems, and particularly on the

Kemeny ranking problem, which can be seen as a subclass of LOP.

Although the parameterised complexity studied in the cited work is

of great relevance, the analysis of Betzler et al. (2011) stands on a

specific property of the Kemeny, which does not hold for the general

LOP, and thus, the extension of the parameterised complexity to the

LOP is not straightforward.

The aforementioned works and the absence of a detailed work

that performs an in-depth analysis of the LOP motivated this paper.

In this work we study the properties that the optimal solutions of

the LOP hold in the framework of local search algorithms, placing

special emphasis on the position where the indexes are placed, and

identifying the role of the associated matrix entries of the instance in

the generation of local optima.

The paper is divided into two parts: first, we provide a detailed de-

scription of the LOP, introducing definitions and theorems that study

the structure of the problem with respect to the optimality of the so-

lutions in the context of local search algorithms. Particularly, we em-

phasise the influence that the positions of the indexes that compound

a solution have when generating local optima solutions. As a result of

the theoretical study, a restricted version of the insert neighbourhood

is proposed. This neighbourhood discards specific insert operations

that involve moving indexes to positions at which they cannot gen-

erate local optima solutions. The theoretical analysis demonstrates

that these insert operations will never be the operations that most

improve the solution in the neighbourhood.

The second part of the paper is devoted to demonstrating the va-

lidity of the restricted insert neighbourhood. In this sense, we develop

a restricted version of the two best performing algorithms for the LOP:

the MA and the ILS. Experimental results show that the restricted ver-

sions of the algorithms outperform the classical designs in 90 percent

and 93.3 percent of the executions respectively, obtaining the same

results for the rest of the cases. Moreover, additional experiments

devoted to measure the execution time needed to perform a given

number of iterations show that the restricted approaches are faster

than the classical versions for most of the instances.

The remainder of the paper is organised as follows: in the next sec-

tion, the definition of the LOP is described. In Section 3, the structural

analysis of the LOP is introduced placing special emphasis on the con-

tribution of the indexes to the objective function. Next, in Section 4

the optimality of the LOP solutions is described in the context of local

search algorithms, and in particular for the insert neighbourhood sys-

tem. Section 5 is devoted to investigating the basis for the restricted

insert neighbourhood system. In order to demonstrate the validity of

the introduced analysis, a complete experimental study is introduced

in Section 6. Finally, some conclusions and ideas for future work are

drawn in Section 7.

2. The linear ordering problem

Given a matrix B = [bkl]n×n of numerical entries, the linear order-

ing problem consists of finding a simultaneous permutation σ of the

rows and columns of B, such that the sum of the entries above the main

diagonal is maximized (or equivalently, the sum of the entries below

the main diagonal is minimized). The equation below formalizes the

LOP function:

f (σ ) =
n−1∑
i=1

n∑
j=i+1

bσiσj
(1)

whereσi denotes the index of the row (and column) ranked at position

i in the solution σ .1 This representation of the LOP is also known as the

triangulation problem of input-output matrices. Although alternative

representations of the problem can be found in Martí and Reinelt

(2011) and Charon and Hudry (2007), due to the theoretical simplicity

and readability of the exposed approach, in the remainder of the paper

the triangulation representation will be considered.

Example 2.1. Let us introduce an example for a n = 5 LOP instance

which will be used throughout the paper.2 In Fig. 1, three different

solutions, e, σ and σ ∗ are described. The initial matrix is represented

by the identity permutation e = (1, 2, 3, 4, 5) (see Fig. 1a), and its fit-

ness, f (e), is 138. The solution σ = (2, 3, 1, 4, 5) introduces a different

ordering of the indexes that provides a solution better than e (see

Fig. 1b), f (σ ) is 158. The optimal solution for this example is given by

σ ∗ = (5, 3, 4, 2, 1) (see Fig. 1c), with fitness f (σ ∗) = 247.

3. Analysis of the problem

In this section, we analyse the LOP by explaining the association

between the indexes in σ and the arrangement of the bkl entries

of the matrix B. In addition, we describe the fitness variation that

provokes changing the position of an index within σ , and the role of

the bkl entries in this regard. As necessary background to understand

the latter content of the paper, in the following list we outline some

meaningful properties of the LOP that define the association between

the indexes in σ , and the bkl entries in the B matrix.

For any permutation of indexes σ of size n and a matrix B of size

n × n:

• Every index σi = k, i = 1, . . . , n, has associated 2(n − 1) entries of

B: n − 1 from row k and n − 1 from column k.
• The set of associated entries of every index σi = k, i = 1, . . . , n,

can be organised in pairs, i.e. every entry in row k, bkσj
(where

j = 1, . . . , n), has a pair in column k, bσjk
, symmetrically located

with respect to the main diagonal.
• All the pairs of entries associated to index σi = k,

{bk1, b1k}, . . . , {bkn, bnk}, remain associated to this index re-

gardless of its position and the position of the rest of the n − 1

indexes.
• Every entry bσiσj

is associated to two indexes, σi and σj.
• For every pair {bσiσj

, bσjσi
} of entries, one entry is always located

above the main diagonal, and the other entry is located below,

thereby bounding the best fitness contribution of this pair to

1 From now on, σ will denote any permutation in Sn , and e will stand for the identity

permutation (1, 2, . . . , n) of size n. In addition k and l will denote the indexes within a

permutation σ , and i, j and z will be used to identify the positions of σ .
2 This example was extracted from Martí and Reinelt (2011).
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