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a b s t r a c t

We develop methods to estimate and exactly calculate the expected cost of a priori policies for the multi-

compartment vehicle routing problem with stochastic demands, an extension of the classical vehicle routing

problem where customer demands are uncertain and products must be transported in separate partitions. We

incorporate our estimation procedure into a cyclic-order-based simulated annealing algorithm, significantly

improving the best-known solution values for a set of benchmark problems. We also extend the updating

procedure for a cyclic order’s candidate route set to duration-constrained a priori policies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle routing problems with stochastic demands (VRPSDs) un-

derlie operational problems in logistics where routes must be planned

without full knowledge of customer demand levels. In such cases, ac-

tual demands are first observed upon arrival to customer locations. In

some situations, products must be transported in independent vehi-

cle compartments, giving rise to the multi-compartment vehicle routing

problem with stochastic demands (MCVRPSD), a generalization of the

single-compartment case (see the review of Gendreau, Laporte, and

Séguin (1996) or the work of Laporte, Louveaux, and Van Hamme

(2002) for examples). Applications of the MCVRPSD include the col-

lection and delivery of different types and qualities of milk (Caramia

& Guerriero, 2010), distribution of various grades of fuel (Brown, Ellis,

Graves, & Ronen, 1987), transport of animal food (El Fallahi, Prins, &

Calvo, 2008), pickup and delivery of livestock (Oppen & Løkketangen,

2008), selective waste collection, and transport of groceries requiring

different levels of refrigeration.

A common approach to handle uncertainty in customer demands

is to restrict attention to a priori policies (see Campbell and Thomas

(2008) for a review). An a priori policy requires vehicles to visit cus-

tomers in the order specified by a set of pre-defined routes, returning

to the depot to replenish in the event vehicle capacity is inadequate

to fully serve demand, i.e., a route failure. A priori routes are routinely
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used in industry (Erera, Morales, & Savelsbergh, 2010) and create a

regularity of service that can be beneficial for both the customers and

the drivers – customers may be served at roughly the same time each

day they require service and the drivers become familiar with their

routes.

We make two main contributions. First, we develop methods to es-

timate and exactly calculate the expected cost of an a priori MCVRPSD

policy. Straightforward procedures exist to calculate the expected

cost of an a priori policy when all products are transported in a

single compartment (Teodorović & Pavković, 1992). However, in the

multi-compartment case, a priori policy evaluation is more difficult.

Mendoza, Castanier, Guéret, Medaglia, and Velasco (2008, 2010) and

Mendoza, Guéret, Medaglia, and Velasco (2011) derive an expression

to calculate the expected cost of an a priori policy, but the expression

requires probability calculations to be made over random variables

representing partially unserved customer demands. The distributions

of these random variables are unknown, thereby making it difficult

to implement the expression. Recognizing this challenge, Mendoza

et al. (2008) explore methods to approximate the expected cost of

an a priori policy for the MCVRPSD. When the ratio of compartment

capacities to customer demands is high, Mendoza et al. (2008) find

a take-all approximation yields good estimates of the expected cost.

However, the bias of the estimate increases as the ratio of compart-

ment capacities to customer demands decreases.

The method we propose to calculate the exact expected cost

of an a priori MCVRPSD policy builds on Goodson, Ohlmann, and

Thomas (2013) and applies to problem instances where customer
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demands follow discrete probability distributions with finite support.

The method requires exponential time to execute and is not practi-

cal for use in optimization procedures. However, the exact method

leads to a simulation scheme that provides unbiased and consistent

estimates of a policy’s expected cost for both discrete and continuous

customer demand distributions. Because the simulation scheme can

be efficiently incorporated into local search procedures, it provides

an attractive alternative when the bias of the take-all approximation

is unacceptable.

Our second contribution is the development of a cyclic-order-

based simulated annealing procedure for the MCVRPSD. Goodson,

Ohlmann, and Thomas (2012) propose cyclic-order neighborhoods as

the basis of local search methods for a broad class of routing problems,

of which the MCVRPSD is a member. We utilize our simulation scheme

for a priori MCVRPSD policies to accelerate the initial iterations of the

simulated annealing procedure. We also extend the cyclic-order up-

dating procedure of Goodson et al. (2012) for the candidate route set

to the duration-constrained a priori policies considered in this paper.

As of this writing, our method appears to be the most effective

heuristic for the MCVRPSD. Without tailoring the cyclic-order search

procedure to the MCVRPSD, we improve the best-known solution

values for 159 of 180 benchmark problem instances and match the

best-known solution values for the remaining 21 instances. These re-

sults, in conjunction with the results of Goodson et al. (2012), support

cyclic-order-based local search as an effective solution procedure for

a variety of routing problems.

The remainder of the paper is organized as follows. In Section 2,

we formally state the MCVRPSD. In Section 3, we review related lit-

erature. In Section 4, we discuss methods to exactly calculate and es-

timate the expected cost of an a priori MCVRPSD policy. In Section 5,

we present our cyclic-order-based simulated annealing procedure.

In Section 6, we discuss the results of computational experiments.

We make concluding remarks and suggestions for future research in

Section 7. Appendix A provides a guide to the primary notation used

in the paper.

2. Problem statement

The MCVRPSD generalizes the classical vehicle routing prob-

lem, a NP-hard optimization problem (Toth & Vigo, 2001). The

MCVRPSD is characterized by a complete graph G = (N ,E), where

N = {0, 1, . . . , N} is a set of N + 1 nodes and E = {(n, n′) : n, n′ ∈ N }
is the set of edges connecting the nodes. Nodes 1, . . . , N represent

customer locations and node 0 represents a depot from which a set

M = {1, 2, . . . , M} of identical vehicles operates. Each vehicle con-

tains a separate compartment for each product in the product set

P = {1, 2, . . . , P}. The capacity of the compartment assigned to prod-

uct p in P is Q p. Customer demands for products are assumed to be

independent random variables. The random demand for product p in

P at customer n inN is denoted Dn,p. We denote the distribution func-

tion by FDn,p(·) with support S(Dn,p), which we require to be a subset

of the range [0, D], where D is a finite number. Prior to arrival at cus-

tomer locations, customer demands are known only in distribution.

Upon arrival, customer demands for each product are observed and

served to the maximum extent possible, subject to available vehicle

capacity for each product. When capacity in one or more compart-

ments is exhausted (i.e., a route failure occurs), a vehicle returns to

the depot and replenishes the capacity of all compartments. Vehicle

routes begin and end at the depot and travel times among customers

are known. The time to travel from location n to location n′ is de-

noted t(n, n′). The objective of the MCVRPSD is to obtain a policy that

serves customer demand with minimal expected travel time subject

to a route duration limit L (e.g., end of a working day), by which time

all vehicles must return to the depot. To be consistent with the liter-

ature, we use travel time to represent cost, noting that t(·, ·) may be

replaced with a general cost function.

We focus on a priori routing policies for the MCVRPSD. A pri-

ori policies are characterized by a priori routes, or predetermined

sequences of customers. We denote an a priori route for vehi-

cle m in vehicle set M by the sequence of customers vm = (vm
0 =

0, vm
1 , . . . , vm

Im , vm
Im+1 = 0). We denote by (vm)m∈M a set containing an

a priori route for each vehicle m in M. In a set of a priori routes,

each customer appears exactly once on exactly one route. We adopt

the classical detour-to-depot policy, the same policy employed by

Mendoza et al. (2010, 2011). The policy requires vehicles to serve

customers in the order they appear in a set of a priori routes. Vehicles

must travel directly to the next customer on the route, i.e., preemp-

tive capacity replenishment is not allowed. In the event of a route

failure, vehicles must make return trips to the depot until customer

demands are fully served. An a priori route is feasible if its expected

travel time is less than or equal to the route duration limit L. If we

denote by V the set of all a priori route sets, by Avm
Im+1

the random

arrival time of vehicle m to final destination vm
Im+1

, and by E[Avm
Im+1

]

the expected arrival time of vehicle m to vm
Im+1, then the problem we

seek to solve is

min

{ ∑
m∈M

E

[
Avm

Im+1

]
: (1)

E

[
Avm

Im+1

]
≤ L, m ∈ M, (2)

(vm)m∈M ∈ V
}

. (3)

Throughout the remainder of the paper, because we refer primarily

to a single a priori route, to ease the notation we drop the superscript

m and refer to a route simply by v and to the ith customer on a route

by vi.

3. Related literature

Research related to multi-compartment vehicle routing appears to

begin with van der Bruggen, Gruson, and Salomon (1995), who con-

sider the task of designing delivery routes for gasoline distribution.

van der Bruggen et al. (1995) and others model customer demands as

deterministic. In this section, we focus on literature treating customer

demands as stochastic.

Mendoza et al. (2008) study take-none and take-all approximations

of the recourse cost component of a priori policies. The take-all ap-

proximation assumes that when a route failure occurs at a particular

customer, all demands for all products at that customer are served

in full before replenishing capacity at the depot; the take-none ap-

proximation assumes none of the demands are served. Both approxi-

mations circumvent the issue of making probability calculations over

random variables with unknown distributions. Computational exper-

iments conclude the take-all scheme is superior, but that the quality of

both approximations degrades as the ratio of compartment capacities

to customer demands decreases.

The methods we propose to estimate and exactly calculate the

expected cost of a priori policies serve as alternatives to the take-

none and take-all approximations. Our methods differ in three ways.

First, the take-none and take-all approximations can be used when

demands follow discrete or continuous probability distributions, pro-

vided the convolution of random demands can be readily calculated

(e.g., Poisson- or normally-distributed demands). In contrast, our ex-

act evaluation procedure can only be used when customer demands

follow discrete distributions, but there is no limit imposed by the

need to calculate convolutions of random variables. The estimation

procedure may be applied regardless of the nature of customer de-

mand distributions. Second, our procedures do not depend on the

assumption that demand realizations are less than or equal to com-

partment capacities, thereby accounting for the possibility of multiple
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