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In this paper the notion of restricted dissimilarity function is discussed and some general results are shown.

The relation between the concepts of restricted dissimilarity function and penalty function is presented.

A specific model of construction of penalty functions by means of a wide class of restricted dissimilarity

functions based upon automorphisms of the unit interval is studied. A characterization theorem of the

automorphisms which give rise to two-dimensional penalty functions is proposed. A generalization of the

previous theorem to any dimension n > 2 is also provided. Finally, a not convex example of generator of

penalty functions of arbitrary dimension is illustrated.
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1. Introduction

The notion of penalty based aggregation function has become in-

creasingly popular in the literature over the last few years (see, for in-

stance, Calvo & Beliakov, 2010 and the references therein). In Bustince,

Jurio, Pradera, Mesiar, and Beliakov (2013), the authors suggest the

use of penalty functions for selecting alternatives in decision making

problems. In particular, they build penalty functions by means of a

particular class of restricted dissimilarity functions (see Bustince, Bar-

renechea, & Pagola, 2008), called faithful restricted dissimilarity func-

tions, in order to generalize one of the most widely used methods in

decision making, that is the weighted voting method (see, for exam-

ple, Hüllermeier & Brinker, 2008; Hüllermeier & Vanderlooy, 2010).

From a mere theoretical point of view, a faithful restricted dissimilar-

ity function is strictly related to a convex automorphism of the real

unit interval up to a bijection. As the authors somehow admit, there is

no real reason for imposing convexity restriction other than to assure

that the corresponding penalty function is convex, so fulfilling, a for-

tiori, the crucial property of quasi-convexity demanded to all penalty

functions.

This consideration has led us to the main goal of this paper: to

characterize a class of restricted dissimilarity functions, wider than

the faithful restricted dissimilarity functions, able to assure that the

generated one-variable mappings, constructed in the same way as in

Bustince et al. (2013), turn out to be penalty functions.

We have organized this paper as follows: In the next section we

introduce the basic notions needed for subsequent developments.

In Section 3 we analyze the limited cases in which a restricted dis-
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similarity function is also a distance and mostly we study a model

of construction of penalty functions by means of a general subclass

of restricted dissimilarity functions strictly connected to automor-

phisms of the real unit interval, also called generators. In Section 4,

we characterize the class of generators of two-dimensional penalty

functions, while in Section 5 we extend the two-dimensional result

to any dimension n > 2. Finally, we present a conclusion and some

references.

2. Basic notions and first results

In this article, we will make use of the following notations and

assumptions.

Our domain of interest is the real unit interval, denoted by I, being

clear that it might be replaced without loss of generality by any closed,

non-empty subinterval of the real line. We adopt the classical nota-

tion x = (x1, . . . , xn) for any n-tuple x in In, while x↗ = (x(1), . . . , x(n))
represents the result of the permutation of the components of x in in-

creasing order, i.e. x(1) ≤ x(2) ≤ . . . ≤ x(n). We denote by Wn the set of

weighting vectors of dimension n, i.e. Wn = {w ∈]0, 1[n :
∑n

i=1 wi = 1}.

We will exclusively reserve the symbol w for any weighting vector:

further, w∗
n stands for the weighting vector given by (1/n, . . . , 1/n).

Definition 2.1. Let x0 ∈ I, μ > 0 and E ⊂ I. Then, we set

μE = {μ · x : x ∈ E} (2.1)

and

E ± {x0} = {t ± x0 : t ∈ E}. (2.2)

We warn the reader that throughout the paper the notion of mono-

tonicity is intended in weak sense: otherwise, we speak of strict

monotonicity. Moreover, when we say that a property holds almost
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everywhere (for short, a.e.), it is intended that it is true outside a set

of Lebesgue measure, denoted by λ, equal to zero.

Consider now the following definition.

Definition 2.2 (Bustince, Fernandez, Mesiar, Pradera, & Beliakov,

2011; Calvo & Beliakov, 2010). Let P : In+1 → [0,∞]. We say that

P is a penalty function of dimension n if, and only if, satisfies:

(i) P(x, y) = 0 if xi = y for all i ∈ {1, . . . , n};

(ii) for every fixed x ∈ In, the set of minimizers of the mapping y 	→
P(x, y) is a subinterval of I, possibly reducible to a singleton.

The penalty based function f : In → I is given by

f (x) = arg min
y

P(x, y)

if y is the unique minimizer or y = (a + b)/2 if the set of minimizers

is a subinterval of I with bounds a and b.

A penalty function is a tool for measuring the disagreement be-

tween the input x and the value y. The penalty based function f asso-

ciates with any input x the corresponding output value y which just

minimizes the chosen disagreement.

The first, prototypical model of penalty function appeared in the

literature was of the form

P(x, y) =
n∑

i=1

dp(xi, y), (2.3)

where dp : I2 → I is given by dp(x, y) = |x − y|p, for p ≥ 1. In particular,

the cases p = 1 and p = 2 were already studied by Fermat, Laplace and

Cauchy (see Hudry, Leclerc, Monjardet, & Barthélemy, 2010; Torra &

Narukawa, 2007 and the references therein). When p = 1, the penalty

function is obtained as sum of the (Euclidean) distances of the com-

ponents of the input x to the value y. The model is then generalized

replacing d1 with dp, with the crucial difference that only d1 is a

distance in mathematical sense. We will return to this point later.

The notion of penalty function is closely related to the dissimilarity

function, as proposed and discussed in Mesiar (2007), even if this

concept in its turn is inspired to a first formulation of penalty function

given by Calvo, Mesiar, and Yager (2004) which is quite different from

the above one. Our version fundamentally coincides with the most

general one as it appears in Calvo and Beliakov (2010), except for the

redundant requirement P(x, y) ≥ 0 for all x, y, here dropped.

In some papers, condition (ii) is replaced by the requirement that

the mapping y 	→ P(x, y) is quasi-convex for any fixed x ∈ In. Recall

that a real function g over a convex subset X of Rn is quasi-convex

if its level sets Lc = {x ∈ X : g(x) ≤ c} are convex (see Greenberg &

Pierskalla, 1971 for a thorough exposition of the notion of quasi-

convexity). It is well-known that if g is a function of a single variable,

then g is quasi-convex if, and only if, either it is monotone or there

exists a x∗ ∈ X such that g is decreasing on {x ∈ X : x ≤ x∗} and in-

creasing on {x ∈ X : x ≥ x∗}. Therefore, it is clear that quasi-convexity

is a stronger condition than (ii).

The restricted dissimilarity functions were introduced by Bustince

et al. (2008) and are inspired, among others, to the notions of proxim-

ity and dissimilarity measures, as they appear in Fan and Xie (1999)

and Liu (1992), respectively. In the applications, they turn out to be

very useful, for instance, in image processing, in order to measure the

dissimilarity of two objects, while, from a theoretical point of view,

they are more flexible than existing dissimilarity functions.

Definition 2.3. A mapping dR : I2 → I is called a restricted dissimi-

larity function if :

(D1) dR(x, y) = dR(y, x) for every x, y ∈ I;

(D2) dR(x, y) = 1 if, and only if, {x, y} = {0, 1};

(D3) dR(x, y) = 0 if, and only if, x = y;

(D4) dR(y, z) ≤ dR(x, t) for all x, y, z, t ∈ I such that x ≤ y ≤ z ≤ t.

In the sequel, we will exclusively deal with continuous restricted

dissimilarity functions. This is not a too strong assumption, since we

know that, fixed any x ∈ I, the mapping t 	→ dR(x, t) is quasi-convex

(see Bustince et al., 2011), hence it is also continuous on I up to a subset

Ex of I such that λ(Ex) = 0 (see Greenberg & Pierskalla, 1971). The next

result just shows that if Ex = ∅ for all x ∈ I, then dR is continuous as

two-place function.

Proposition 2.4. Let dR be a restricted dissimilarity function. Then dR

is continuous if, and only if, the mapping t 	→ dR(x, t) is continuous on I

for every fixed x ∈ I.

Proof. First of all, notice that, by (D1), the assumption may be equiv-

alently formulated as continuity of the mapping t 	→ dR(t, x) for every

fixed x ∈ I. Given an arbitrary point (x0, y0) of I2, we have to show

that for any real ε > 0 there exists a neighborhood U of (x0, y0) such

that

dR(x0, y0)− ε ≤ dR(x, y) ≤ dR(x0, y0)+ ε

for all (x, y) ∈ U. Let us divide the proof into four cases, according to

the position of (x0, y0).
Case (1): 0 < x0 < y0 < 1. By continuity of t 	→ dR(x0, t) at t = y0,

we can always find a δ ∈]0, min{x0, 1 − y0, (y0 − x0)/2}[ such that

|dR(x0, t)− dR(x0, y0)| ≤ ε/2 (2.4)

for all t ∈ [y0 − δ, y0 + δ]. Moreover, by continuity of t 	→ dR(t, y0 + δ)
at t = x0, we can always find a δ1 ∈]0, δ[ such that

dR(x0 − δ1, y0 + δ) ≤ dR(x0, y0 + δ)+ ε/2.

Employing Eq. (2.4), last inequality leads to

dR(x0 − δ1, y0 + δ) ≤ dR(x0, y0)+ ε. (2.5)

In the same way, starting with the continuity of the mapping t 	→
dR(t, y0 − δ) at t = x0, there exists a δ2 ∈]0, δ[ such that

dR(x0 + δ2, y0 − δ) ≥ dR(x0, y0)− ε. (2.6)

Set δ∗ := min{δ1, δ2}: by the properties of δ, it is quite easy to see that

x0 − δ1 ≤ x0 − δ∗ < x0 + δ∗ ≤ x0 + δ2 < y0 − δ,

hence, by (D4), one immediately finds

dR(x0 + δ∗, y0 − δ) ≤ dR(x, y) ≤ dR(x0 − δ∗, y0 + δ)

for all (x, y) ∈ [x0 − δ∗, x0 + δ∗] × [y0 − δ, y0 + δ], and the claim di-

rectly follows from Eqs. (2.5) and (2.6).

Case (2): 0 < y0 < x0 < 1. It directly follows from the previous

case, taking into account (D1).

Case (3): 0 < x0 = y0 < 1. The proof is the same (even simpler) as

that of the first case.

Case (4): (x0, y0) belongs to the boundary of I2. This is again a

sub-case of the first one, so concluding the proof.

In what follows, AC(I)denotes the family of absolutely continuous

real functions over I. We say that any ϕ : I → I belongs to A(I) if, and

only if,

(A1) ϕ ∈ AC(I);
(A2) ϕ is an increasing bijection.

Obviously, any ϕ ∈ A(I) is an automorphism of the real unit inter-

val (see, for instance, Fodor & Roubens, 1994). Recall that, as a conse-

quence of (A1), the derivative of any ϕ ∈ A(I)exists and is defined on

I up to a subset of measure zero (see, for instance, Yeh, 2006).

Let us introduce now a special class of restricted dissimilarity

functions by means of a construction illustrated in the next lemma,

whose elementary proof is omitted. Later on, any continuous bijection

h : I → I is simply called a scaling function.
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