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a b s t r a c t

In this paper, we study a multi-periodic production planning problem in agriculture. This problem belongs

to the class of crop rotation planning problems, which have received considerable attention in the literature

in recent years. Crop cultivation and fallow periods must be scheduled on land plots over a given time

horizon so as to minimize the total surface area of land used, while satisfying crop demands every period.

This problem is proven strongly NP-hard. We propose a 0-1 linear programming formulation based on crop-

sequence graphs. An extended formulation is then provided with a polynomial-time pricing problem, and a

Branch-and-Price-and-Cut (BPC) algorithm is presented with adapted branching rules and cutting planes. The

numerical experiments on instances varying the number of crops, periods and plots show the effectiveness

of the BPC for the extended formulation compared to solving the compact formulation, even though these

two formulations have the same linear relaxation bound.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Although definitions of sustainable agriculture may vary, agricul-

tural systems are generally considered as sustainable if they sustain

themselves along a long period of time, that is, if they are economically

viable, environmentally safe, and socially fair. In particular, sustain-

able agricultural practices are usually requested to incorporate alter-

natives to toxic fertilizers and pesticides, avoid excessive tillage and

preserve soils. Many research papers about sustainable agriculture

focus on the pollution and social side-effects of intensive agriculture,

such as water spoiled by pesticides, crop diseases, and concentration

of production in fewer and bigger farms that can afford large in-

vestments in costly automative production systems and technologies

(e.g., Altieri, 1995; Gliessman, 1998). Consistent with this diagnosis,

recommendations on the need for new sustainable agricultural sys-

tems can be found in Tilman, Cassman, Matson, Naylor, and Polasky

(2002). Crop rotations, combined with fallow periods where the land

rests in order to recover its soil attributes after production, enable

crop diversification on both space and time dimensions. Typical crop

rotation problems usually focus on building rotations that maximize

a profit or yield function, where the total surface area of land is either
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unbounded or fixed (Detlefsen & Jensen, 2007; El-Nazer & McCarl,

1986; Haneveld & Stegeman, 2005; dos Santos, Michelon, Arenales,

& Santos, 2011). This paper deals with an aspect of sustainability

which is rarely considered in optimization of agricultural production

systems: the minimization of the surface area needed to cover crop

demands that vary over time. A compact formulation for a mixed-

integer variant of the problem was originally introduced in Alfandari,

Lemalade, Nagih, and Plateau (2011), following a communication in

the EURO XXI Conference in 2006. Since then, a number of papers

have addressed crop rotation planning in a sustainable development

context. For example, a column generation approach was applied in

dos Santos et al. (2011), where the objective is to maximize space

occupation and the master problem includes adjacency constraints

between plots. Column generation was also used in dos Santos, Costa,

Arenales, and Santos (2010) for a crop rotation problem with land di-

vided into plots, but with continuous variables representing the sur-

face area assigned to a given rotation, hence requiring no branching.

Another example can be found in Costa, dos Santos, Alem, and Santos

(2014) where harvested crops can be stocked for a limited period of

time, and demands are subject to uncertainty. Rdulescu, Rdulescu,

and Zbganu (2014) present multi-objective crop rotation models that

take risk into account, converted into linear programs and solved with

standard Linear Programming (LP) methods. A survey on crop rotation

decisions exists (Dury, Schaller, Garcia, Reynaud, & Bergez, 2012) but

does not include most recent papers in optimization. Dantzig–Wolfe

decomposition (Dantzig & Wolfe, 1960) was applied to our problem
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in Sadki (2011), but with no inclusion in a branch-and-price approach

to obtain optimal integer solutions. To our knowledge no branch-and-

price algorithm has ever been designed so far for any crop rotation

planning problem.

The original model presented in Alfandari et al. (2011) was mo-

tivated by a Madagascan case study where the minimization of cul-

tivated space contributed to the sustainable development of the pri-

mary forest in the long term. Indeed, farmers in Madagascar are used

to clearing more and more primary forest areas – although this is

prevented by law – in order to extend their cultivation surface area to

better cover their needs. A plot could be cultivated with several crops

in the same period in this study. We direct the reader to Alfandari

et al. (2011) for more details on the agricultural Madagascan con-

text. In this paper, we present a fully-combinatorial problem where a

single crop can be cultivated on each plot at each period.

The paper is organized as follows. Section 2 introduces notation

and crop-sequence graphs. Section 3 describes a compact formulation

of the problem. Section 4 proves NP-hardness. Section 5 provides a

covering integer programming extended formulation derived from

a Dantzig–Wolfe decomposition approach. Section 6 presents the

branch-and-price-and-cut with branching rules and cutting planes.

Section 7 presents computational experiments for various time hori-

zons, number of crops and plot sizes. Section 8 concludes the paper.

2. Notations and crop-sequence graphs

We consider the following notations for the Minimum-Space Crop

Rotation Planning problem (MSCRP):

• t = 1, . . . , T: the periods of the planning horizon.
• p = 1, . . . , P: the set of land plots that can possibly be used.
• C: the set of crops, with f ∈ C the fallow index considered as a

specific crop for modeling reasons.
• Ct ⊆ C: the set of crops that can be cultivated at period t.
• dct: the demand (in tons) of crop c ∈ Ct \ {f } at period t.
• L: the number of fallow periods after which the yield no longer

increases.
• L′: the maximum number of consecutive periods a plot can be

cultivated before returning fallow.
• sp: the surface area of plot p (in ha).

The state of a plot p is a triplet v = (c, l, l′) where c is the crop (or

fallow) at the current period, l ≤ L is the fallow length, i.e., the number

of consecutive fallow periods before cultivation (if this number is

greater than L then it is replaced by L), and l′ ≤ L′ is the cultivation

length, i.e. the number of consecutive cultivation periods up to the

current period. The only possible states are (f, l, 0) for l = 1, . . . , L,

and (c, l, l′) for c ∈ C \ {f }, l = 1, . . . , L, l′ = 1, . . . , L′. When the plot is

cultivated in period t and remains cultivated in the next period t + 1

the cultivation length l′ of the plot is increased by one. When the

maximum length of cultivation L′ is reached, the plot has to return

fallow, with fallow length l = 1 and cultivation length l′ = 0. When a

plot has been left fallow for l periods, it can either remain fallow the

next period with length min{l + 1, L} or go back to cultivation with

some crop c, fallow length l and cultivation length l′ = 1. We denote

by Succ(v) the set of possible successors of state v at the next period,

and by Pred(v)the set of predecessors of state v at the previous period.

Fig. 1 provides the list of possible successors and predecessors of each

state if C = {rice, bean, f }, rice precedes bean and bean precedes rice.

State v Succ(v) Pred(v)
(rice, l, 1) (bean, l, 2), (f, 1, 0) (f, l, 0)
(rice, l, l′), 1 < l′ < L′ (bean, l, l′ + 1), (f, 1, 0) (bean, l, l′ − 1)
(rice, l, L′) (f, 1, 0) (bean, l, L′ − 1)
(f, l, 0) (f,min(l + 1, L), 0), (rice, l, 1), (bean, l, 1) (rice, l, l′), (bean, l, l′)

Fig. 1. Table of successors and predecessors of a state with two alternating crops.

We denote by Vpt the set of possible states of plot p at period t. At

the beginning of the planning horizon, Vp0 is reduced to a single state

startp. We note for t = 1, . . . , T

Apt = {(v, v′) ∈ Vp,t−1 × Vpt | v′ ∈ Succ(v)}
the set of possible transitions from a state v ∈ Vp,t−1 to a state v′ ∈ Vpt ,

as illustrated by Fig. 1. We also note, for each state v ∈ Vpt , A+
pt(v) =

{(v, v′) | (v, v′) ∈ Ap,t+1} and A−
pt(v) = {(v′, v) | (v′, v) ∈ Apt} the set of

transitions that start at state v and end at state v at period t, respec-

tively.

Now, consider the acyclic directed graph Gp = (Vp, Ap) with Vp =
∪0≤t≤T Vpt ∪ {endp}, where node endp represents the end of a rotation,

and Ap = ∪1≤t≤T Apt ∪ {(v, endp) | v ∈ VpT}. We call this graph the crop-

sequence graph. By construction, any path from startp to endp in graph

Gp identifies a feasible crop rotation on plot p. For each crop c ∈ Ct \
{f }, we call Ac

pt ⊂ Apt the set of arcs such that crop c is cultivated at

the final endpoint of transition a. Each arc a ∈ Ac
pt is valued by spwpac,

where wpac is the number of tons of crop c obtained by transition a

on one hectare of plot p. All other arcs, i.e., those which have a fallow

state (f, l, 0) as final endpoint and those that terminate at endp, have

a zero value.

Fig. 2 describes such a crop-sequence graph for two possible crops

rice (r) and bean (b) and five periods. The following section describes

a compact formulation of the problem.

3. Compact formulation

MSCRP problem is that of constructing crop rotations minimizing

the total space area required for covering seasonal crop demands. We

introduce the following Compact Formulation (CF) for MSCRP.

min
P∑

p=1

∑
a∈Ap1

spxpa1 (1)

s.t
P∑

p=1

∑
a∈Ac

pt

spwpacxpat ≥ dct ∀c ∈ Ct \ {f }, t = 1, . . . , T (2)

(CF)
∑

a∈A−
pt(v)

xpat = ∑
a∈A+

pt(v)

xpa,t+1
∀p = 1, . . . , P,

t = 1, . . . , T − 1, v ∈ Vpt
(3)

xpat ∈ {0, 1} (4)

Binary decision variable xpat is equal to one if and only if plot p

uses transition a in period t. The objective function (1) minimizes the

total surface area of plots p that are used for production, i.e. such

that
∑

a∈Ap1
xpa1 = 1. Global constraints (2) ensure that the total pro-

duction of a crop is at least the demand for every period. Flow con-

servation constraints (3) are local constraints associated with a plot

p and define a path structure for a rotation on that plot. Note that

if
∑

a∈Ap1
xpa1 = 0, for this plot p all variables xpat are equal to zero

which means that no crop rotation is used on that plot. The linear

relaxation of CF will be noted CF. We study the complexity of the

MSCRP problem in the following section.

4. Problem complexity

We prove the NP-hardness of this problem with a polynomial

reduction from the (unweighted) Set Covering Problem (SCP). In the

unweighted SCP, we are given a set of elements I = {1, . . . , n} and a

collection of subsets of elements S = {S1, . . . , Sm} such that Sj ⊂ I. The

objective is to find a collection S ′ ⊂ S such that
⋃

Sj∈S ′ Sj = I and the

size |S ′| of the cover is minimum.

Theorem 1. MSCRP is strongly NP-hard and reduces to the Set Covering

Problem.

Proof. We transform a general SCP instance into a specific MSCRP

instance in the following way. Take P = m, T = m + n, C = {f, 0} ∪ I =
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