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a b s t r a c t

The theory of aggregation most often deals with measures of central tendency. However, sometimes a very

different kind of a numeric vector’s synthesis into a single number is required. In this paper we introduce a

class of mathematical functions which aim to measure spread or scatter of one-dimensional quantitative data.

The proposed definition serves as a common, abstract framework for measures of absolute spread known

from statistics, exploratory data analysis and data mining, e.g. the sample variance, standard deviation, range,

interquartile range (IQR), median absolute deviation (MAD), etc. Additionally, we develop new measures of

experts’ opinions diversity or consensus in group decision making problems. We investigate some properties

of spread measures, show how are they related to aggregation functions, and indicate their new potentially

fruitful application areas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many introductory textbooks on applied statistics (or academic

lectures on the subject) include a review of the so-called descriptive

statistics, i.e. methods for summarizing quantitative data. Most often

such methods are divided into at least two classes (cf. Aczel, 1996,

Chap. 1 and e.g. Cramér, 1946):

1. measures of central tendency (also known as measures of location

or centrality of observations); e.g. sample quantiles (including

median, min, and max), arithmetic mean, mode, trimmed and

winsorized mean etc.,

2. measures of variability (or data spread), e.g. range, interquartile

range, variance, standard deviation.

At the most general level, the process of combining multiple nu-

meric values into a single, representative number is called aggrega-

tion. The theory of aggregation became a genuine, rapidly develop-

ing research field in the 1980s (see e.g. Beliakov, Pradera, & Calvo,

2007; Calvo, Mayor, & Mesiar, 2002; Grabisch, Marichal, Mesiar, &

Pap, 2009, 2011a,b). It may be observed, however, that the aggre-

gation theory mainly focuses on the above-mentioned measures of

central tendency, e.g. generalized means (OWA, OWMax operators,

quasi-arithmetic means, etc.), averages, or “averaging functions”.

Such a broad class of tools is characterized by the following widely

accepted definition of an aggregation function (see Grabisch et al.,

2009, Def. 1.1).
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Definition 1. Let I = [a, b]. A : I
n → I is an aggregation function if at

least:

(a1) it is nondecreasing in each variable, i.e. for all x, x′ ∈ I
n such that

x ≤n x′, i.e. (∀i) xi ≤ x′
i
, it holds A(x) ≤ A(x′),

and fulfills the boundary conditions:

(a2) infx∈In A(x) = inf I,

(a3) supx∈In A(x) = sup I.

It is true that these characteristic properties reflect somehow the

concept of data synthesis: finding a value representative to the whole

vector. Moreover, it is well-known that such functions are strongly

connected to monotone (fuzzy) measures and integrals (cf. e.g. Greco,

Mesiar, & Rindone, 2014).

Aggregation functions have many successful applications, for ex-

ample in multicriteria or group decision making, statistics, quality

management, engineering, approximate reasoning, fuzzy sets and

fuzzy logic (cf. the notion of a t-norm and t-conorm, which are par-

ticular aggregation functions in [0, 1]2), etc.

Example 1. In a group decision making problem, assume that n de-

cision makers express as x1, . . . , xn ∈ [0, 1] the strength of preference

toward an alternative. An aggregation function may be used to com-

bine these assessments in order to obtain a global score A(x1, . . . , xn).
For example, let n = 4 and x = (1, 1, 1, 0). If all the experts have the

same standing, one may use e.g. the arithmetic mean to combine their

opinions; in such a case we get A(x) = 0.75. However, assume that

the fourth decision maker is conceived as less competent (at least in

a given matter) than the other ones, or his/her opinion has lower sig-

nificance for some other reason (see e.g. Bernasconi, Choirat, & Seri,

2014; Saaty, 1994). If e.g. a weighting vector w = (2/7, 2/7, 2/7, 1/7)
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describes the importance of the respective judges, then by calculating

the weighted mean we get A′(x) = 6/7 � 0.86.

It is evident that to understand the very nature of aggregation pro-

cesses better, as well as to meet the practitioners’ needs, we should

explore new classes of methods for summarizing quantitative data.

And so, the second group of measures from the above classification

of descriptive statistics consists of single numbers that quantify the

broadly-conceived “variability” of mathematical objects. Let us inves-

tigate it more deeply.

An important, yet not directly connected with our task, character-

ization of measures of entropy or uncertainty of discrete probability

mass functions (represented by numeric vectors in [0, 1]n with ele-

ments summing up to 1) was proposed by Martín, Mayor, and Suñer

(2001). Such a class includes e.g. the Shannon entropy and alike, cf.

also (Kostal, Lansky, and Pokora (2013)). Other very loosely related

measures include the notion of fuzziness of a fuzzy set, cf. (Sanchez &

Trillas, 2012; Weber, 1984; Zeng & Li, 2006), multidiscances (Martin

& Mayor, 2011), or a probability distribution’s scale parameter esti-

mates (non-negative, translation and ratio scale invariant functions

discussed by Pitman, 1939).

Among the aggregation methods of our concern, on the other hand,

we may find:

1. Measures of absolute data spread, e.g. standard deviation, IQR, MAD.

In this case, an absolute spread measure V may accompany an

aggregation function A in order to state that a numeric list x is

concisely described as A(x)± V(x).
2. Measures of relative data spread (e.g. Gini coefficient, coefficient of

variation), which are dependent on the order of magnitude of a

numeric list’s elements. For instance, imagine that we have two

groups of people. The first group consists of (1, 2, 3)-year-olds and

the second one of (101, 102, 103)-year-olds. Intuitively, the rel-

ative spread of age in the first group is greater than that of the

second group.

Most importantly, to our best knowledge none of these has been dis-

cussed from the point of view of aggregation theory. In particular,

it is still unknown what characteristic properties link the measures

within both groups. Note that even in statistics there are many func-

tions which aim – at least theoretically – to be used for the mentioned

purposes. Also, diverse application areas require treatment with dif-

ferent suitable measures. We strongly believe that the measures of

absolute and relative spread are worth of deeper, separate studies.

Hence, this contribution will focus on the first subclass.

Example 1 (cont’d). If all the experts are of the same esteem, we may

use e.g. the sample standard deviation to assess the consistency of

decision makers’ opinions, refer e.g. to Huang, Chang, and Lin (2013)

for such an approach. However, if some form of weighting of the

importance of opinions or their values is needed, then we should seek

for a different kind of method for measuring the hetero/homogeneity.

This, apart from measures of central tendency, could be an important,

supplementary information on a numeric sequence, (cf. e.g. Ohki &

Murofushi (2012)).

The paper is structured as follows. In Section 2 we propose a bi-

nary preorder which is further on used to determine whether a vector

has no larger absolute spread than another one. Basing on this notion,

in Section 3 we introduce the notion of a spread measure and in-

dicate some additional properties that may be useful in particular

application areas. In Section 4 we prove that the spread measures are

naturally connected to aggregation functions. In Section 5 we show

that the well-known descriptive statistics, like sample variance, stan-

dard deviation, interquartile range, range, median absolute deviation,

and mean difference, are consistent with our definition and develop

some new classes of functions which are of particular usefulness in

DM tasks. Finally, Section 6 concludes the paper and indicates many

ideas worth of deeper further studies.

2. Vectors’ spread

Fix n ∈ N and let I = [a, b], b > a. From now on for each c ∈ I we

denote by (n ∗ c)a sequence (c, c, . . . , c) ∈ I
n. Additionally, we assume

that [k] = {1, . . . , k} and that whenever at least one argument is a

sequence, then all arithmetic operations are properly vectorized, e.g.

we have x + x′ = (x1 + x′
1, . . . , xn + x′

n) and x + c = x + (n ∗ c) = (x1 +
c, . . . , xn + c). In particular, Ind is a vectorized Boolean indicator func-

tion, i.e. Ind(c1, . . . , cn) = (v1, . . . , v1) with vi = 1 iff logical condition

ci is true and 0 otherwise. What is more, let x(i), i ∈ [n], denote the ith

smallest element in x ∈ I
n, S[n] denote the set of all permutations of

[n], and for any σ ∈ S[n], I
n
σ = {(x1, . . . , xn) ∈ I

n : xσ(1) ≤ · · · ≤ xσ(n)}.

Furthermore, if F : I
n → I, then let F|σ denote the restriction of F to

I
n
σ , i.e. F|σ : I

n
σ → I, F|σ (x) = F(x) for any x ∈ I

n
σ .

2.1. Introductory remarks

Please note that the notion of ≤n plays a central role in the defini-

tion of aggregation functions. It is because an aggregation function is

a morphism between the partially ordered space (In, ≤n)and linearly

ordered space (I, ≤), cf. property (a1).

In other words, if x ≤n x′, then we are certain that each aggregation

function ranks x no higher than x′.
We shall introduce the class of absolute spread measures in a

similar manner. Let us pose a question: In which case does a given

vector in I
n surely have the same or not greater spread than another

one in I
n? Here is a list of the sine qua non postulates that seem

reasonable for most applications.

• Lowest possible spread. Any constant vector, (n ∗ c), c ∈ I should

have the lowest possible spread of all the vectors considered.
• Invariance to translations. Spread comparison results should not

change when we translate all elements in at least one sequence

considered, i.e. x and x + t are of the same spread for any x, t. Note

that such a condition would be inappropriate in case of measures

of relative spread.
• Non-symmetry. In statistics and data analysis, perhaps we will not

take into account the relative ordering of the elements in a se-

quence: for any σ ′, σ ′′ ∈ S[n] the vectors (xσ ′(1), . . . , xσ ′(n)) and

(xσ ′′(1), . . . , xσ ′′(n))have the same spread, as we treat all the obser-

vations as just “points in the real line”; however, here we should

be interested in a more general setting in which the relative or-

dering may be important: for example, each element in a vector

may have a corresponding weight which is determined by its po-

sition (the ith element may be more “important” than the jth, cf.

the above example).

Moreover, how to modify a given vector x so that its spread surely does

not decrease? A sensible answer may be given in terms of the notion

of some kind of distance between all the pairs of elements. Namely,

if the distance between each xi and xj does not decrease, then the

spread also does not decrease. The most natural choice of the distance

measure in I is of course an �p-norm generated one, d(xi, xj) = |xj − xi|.
However, according to the non-symmetry postulate, we should rather

insist on checking whether the signed distance between each pair

of observations of the first vector is not greater than the distance

between the corresponding pairs from the second one, cf. Rothschild

& Stiglitz (1970) for a well-known approach concerning increasing a

spread of a probability distribution.

2.2. Definition

The above intuitions are reflected by the following binary relation

�n on I
n. Given x, x′ ∈ I

n, we write x �n x′ and say that x has not
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