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Despite linear programming and duality have correctly been incorporated in algorithms to compute the

nucleolus, we have found mistakes in how these have been used in a broad range of applications. Overlooking

the fact that a linear program can have multiple optimal solutions and neglecting the relevance of duality

appear to be crucial sources of mistakes in computing the nucleolus. We discuss these issues and illustrate

them in five mistaken examples from this and other journals. The purpose of this note is to prevent these

mistakes propagate longer by clarifying how linear programming and duality can be correctly used for

computing the nucleolus.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the main solution concepts in cooperative game theory

is the nucleolus, proposed by Schmeidler (1969). A number of ap-

proaches have been developed in order to compute it, as reviewed

by Leng and Parlar (2010) and Çetiner (2013). Although linear pro-

gramming and duality have been correctly used in several approaches

(e.g. Fromen, 1997; Hallefjord, Helming, & Jørnsten, 1995; Kimms &

Çetiner, 2012), we have found that the nucleolus has been wrongly

computed over the years in a wide variety of contexts. The mistakes

appear to be caused by overlooking the possibility that a linear pro-

gram can have multiple solutions, and by neglecting the use of the

dual solution as a valuable source of information in such cases. In this

short communication, we discuss these issues and illustrate them in

five examples taken from articles published in this journal and others.

The examples correspond to applications of cooperative game theory

in joint development of projects (Kruś & Bronisz, 2000), production

and transportation planning (Sakawa, Nishizaki, & Uemura, 2001),

electricity markets (SatyaRamesh & Radhakrishna, 2009), manufac-

turing (Oh & Shin, 2012), and investments (Lemaire, 1984). It came to

our attention that similar errors have appeared in such a wide range

of applications. Our purpose in this note is to clarify how linear pro-

gramming and duality can be used to correctly calculate the nucleolus,

thus to prevent an even larger propagation of these errors. The clari-

fication on how to use these concepts is presented in Section 2 of this

note. In Section 3, we present the mistaken examples from previous
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literature and compute the correct nucleolus to them. In Section 4,

we conclude with some final remarks.

2. The nucleolus of a cooperative game and linear programming

Let N = {1, . . . , n} be the set of players and K the set of all non-

empty subsets of N. The characteristic function v : K → R assigns to

each coalition S in K the cost of coalition S. A preimputation or cost al-

location vector x = (x1, . . . , xn)assigns to each player j in N a quantity

xj such that
∑

j∈N xj = v(N); that is, the cost of the grand coalition N is

split among its members according to the allocation x (xj ∈ R ∀j ∈ N).

An allocation vector x satisfies rationality if
∑

j∈S xj ≤ v(S)∀S ∈ K. The

core of the game is the set of preimputations that satisfy the rational-

ity conditions.

Define the excess of coalition S at x as ε(x, S) = v(S)− ∑
j∈S xj. The

excess is a measure of how satisfied a coalition S is with the cost

allocation x. The larger the excess of S, the more satisfied coalition

S is. Define the excess vector at x as e(x) = (ε(x, S1), . . . , ε(x, Sm)),
where the sets Si represent the coalitions in K \ N, and m = 2n − 2.

For an excess vector e ∈ R
m, define a mapping θ such that θ(e) = y,

where y ∈ R
m is the vector which results from arranging the compo-

nents of e in a non-decreasing order. A vector y = (y1, . . . , ym) is said

to be lexicographically greater than another vector ȳ = (ȳ1, . . . , ȳm)
if either y = ȳ or there exists h ∈ {1, . . . , m} such that yh > ȳh and

yi = ȳi ∀i < h (if h = 1, it is enough that yh > ȳh). We annotate y � ȳ.

Note in some contexts the characteristic function v is defined as

a benefit instead of cost, and the excess as a measure of dissatisfac-

tion instead of satisfaction. Both perspectives can be approached in

equivalent ways. We rather adopt the cost perspective, since most

of the recent interest for cooperative games in Operations Research

comes from cost sharing problems in collaborative logistics. Also, our
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attention focus in games with a non-empty core. A main question in

these games is how the players should share the cost v(N) when col-

laborating in the grand coalition N. The nucleolus is one of the most

used solution concepts for this problem.

The nucleolus of a cost sharing game with non-empty core can

be defined as the preimputation x which lexicographically maxi-

mizes the excess vector, that is, θ(e(x)) � θ(e(x̄)) for all preimpu-

tation x̄. Schmeidler (1969) proves that the nucleolus is unique. In

order to compute the nucleolus, let us first consider the following lin-

ear programming model (henceforth denoted as P), which looks for a

preimputation x = (x1, . . . , xn) that maximizes the minimum excess

ε among all the coalitions.

(P) max ε (1)

s.t. ε +
∑

j∈S

xj ≤ v(S) ∀S ⊂ N, S 	= ∅ (2)

∑

j∈N

xj = v(N) (3)

ε ∈ R, xj ∈ R ∀j ∈ N (4)

Objective function (1) maximizes ε. Constraints (2) impose that such

ε cannot be greater than the excess of any coalition. Thus, (1) and

(2) together provide that ε is exactly equal to the minimum excess.

Constraint (3) is the efficiency condition, which provides that the cost

of the grand coalition v(N) is split among its players according to

the allocation x. Constraints (4) state the nature of the variables. The

solution to P is not necessarily unique. As we will illustrate in the nu-

merical examples, it may occur that more than one allocation x leads

to the optimal objective value. In addition, a solution of P provides an

allocation that maximizes the lowest excess, but not necessarily the

second or any subsequent lowest excess. The nucleolus can be found

by solving a sequence of linear programs (LPs), as in the algorithm

by Fromen (1997) which we briefly outline below. The first LP in the

sequence corresponds to P. Let ε1 be the optimal objective value of P.

The kth LP (k > 1) in the sequence is formulated below.

max εk (5)

s.t. εk +
∑

j∈S

xj ≤ v(S) ∀S ⊂ N : S /∈ Fk (6)

εi +
∑

j∈S

xj = v(S) ∀S ∈ Fi, i ∈ {1, . . . , k − 1} (7)

∑

j∈N

xj = v(N) (8)

εk ∈ R, xj ∈ R ∀j ∈ N (9)

In this kth LP, objective function (5) and constraints (6) provide that

the kth minimum excess εk is maximized. Constraints (7) state that

the excess of the coalitions contained in set Fi must be equal to the

optimal objective value εi to the ith LP. Constraints (8) and (9) state

conditions for the efficiency and nature of the variables, respectively.

The set Fi is the set of all coalitions for which the excess constraint (6)

is satisfied with equality sign for all the solutions to the ith LP. Thus,

the excess of the coalitions in Fi must be fixed to εi in the kth LP in the

series for all k > i, as expressed in constraint (7). The set Fk is simply

the union of all the coalitions for which its excess has been fixed in

a previous LP in the sequence, that is, Fk = ⋃
i<k Fi. Note by defining

F1 = ∅ and omitting constraints (7) for k = 1, one recovers the first

problem P in the sequence. A key issue is how to find the set Fi, and

here is where dual linear programming plays a relevant role. The dual

of P, which we will refer as model D, is formulated below.

(D) min
∑

S∈K

v(S) · yS (10)

s.t.
∑

S∈K\N

yS = 1 (11)

∑

S∈K:j∈S

yS = 0 ∀j ∈ N (12)

yS ≥ 0 ∀S ∈ K \ N, yN ∈ R (13)

From duality theory, when the optimal value of a dual variable is pos-

itive, the inequality constraint associated to this variable must hold

with equality at any optimal solution of P. Therefore, given a solution

to P the set F1 can be formed by all the coalitions S for which yS is

positive in the corresponding solution to D. Analogously, for a general

k, the set Fk can be formed by all the coalitions such that the dual

variable associated to constraint (6) is positive in the corresponding

optimal solution to the dual problem of the kth LP in the sequence.

In order to find the nucleolus, the solution process proceeds until a k

where the LP has a unique solution. At the latest, such unique solu-

tion will be obtained when constraints (7) and (8) define a system of

n independent linear equations.

Strictly speaking, the previous procedure computes the prenu-

cleolus of the game. The nucleolus requires x not only to be a

preimputation but also to satisfy the individual rationality constraint

xj ≤ v({j}) ∀j ∈ N. This can be explicitly added as a constraint in the

LPs for games whose core may be empty. However, in games with

non-empty core the prenucleolus coincides with the nucleolus, so

the explicit inclusion of this constraint is not needed. Also, notice that

for games with non-empty core the optimal objective value is non-

negative for all the LPs in the sequence, thus one can declare εk ≥ 0

instead of εk ∈ R.

3. Numerical examples

In this section we present five examples taken from a variety of

contexts in the literature, where the nucleolus has been wrongly cal-

culated. The first two examples are taken from articles published in

this journal and the other three examples from other journals. We

identify two main sources of error. First, overlooking the fact that the

solution to model P is not unique. Second, given a particular solution

to the ith LP in the sequence, the set Fi has been wrongly computed as

the set of all coalitions whose excess is equal to εi at such particular

solution.

We use the notation v̂(S) for referring to the characteristic function

of games where the players share benefits instead of costs (the LP

models for these games remain the same as in Section 2 by defining

v(S) = −v̂(S)).

3.1. Joint projects

Kruś and Bronisz (2000) consider a cooperative game where dif-

ferent agents are interested in the implementation of a project. The

authors outline a correct algorithm for calculating the nucleolus (and

other nucleoli variants) based on a sequence of LPs. They correctly

acknowledge that the solution to an LP in the sequence may not have

a unique solution, and also that the optimal dual solution is useful

for the implementation of the algorithm. They refer the reader to

Christensen, Lind, and Tind (1996), who indeed incorporate the infor-

mation of the dual values in the solution process correctly. Despite

the correctness of the algorithm by Kruś and Bronisz (2000), we have

found a calculation error in a numerical example reported in their

article. The characteristic function of this example is shown in the

third column of Table 1. The first and second columns of the table

show an index c ∈ {1, . . . , 2n − 1} that we use to refer to each coali-

tion and the players who conform them, respectively. The next three

columns show the correct nucleolus solution x we have computed

for this example, and the excess vector in non-decreasing order to-

gether with the index of each coalition in this vector. The last three

columns show the solution x̄ given by Kruś and Bronisz (2000), and

the corresponding excess vector.
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