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a b s t r a c t

Parameter estimation based on uncertain data represented as belief structures is one of the latest problems

in the Dempster–Shafer theory. In this paper, a novel method is proposed for the parameter estimation in

the case where belief structures are uncertain and represented as interval-valued belief structures. Within

our proposed method, the maximization of likelihood criterion and minimization of estimated parameter’s

uncertainty are taken into consideration simultaneously. As an illustration, the proposed method is employed

to estimate parameters for deterministic and uncertain belief structures, which demonstrates its effectiveness

and versatility.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dempster–Shafer theory (D–S theory for short) (Dempster, 1967;

Shafer, 1976) has been widely used because it allows to handle uncer-

tain data (Durbach & Stewart, 2012; Yang, Yang, Liu, & Li, 2013; Yang

& Xu, 2013). In D–S theory, various belief structures are employed to

represent the uncertain data. Recently, the study of parameter estima-

tion based on belief structures has attracted many attentions (Come,

Oukhellou, Denoeux, & Aknin, 2009; Denoeux, 2010, 2013; Su, Wang,

& Wang, 2013). Typically, Denoeux (Denoeux, 2013) proposed an ev-

idential EM algorithm for parameter estimation in the case of crisp

belief structures, and Su et al. (2013) developed a parameter estima-

tion approach for fuzzy belief structures. In this paper, the parameter

estimation based on interval-valued belief structures (Wang, Yang,

Xu, & Chin, 2006; Yager, 2001) has been considered. A novel param-

eter estimation method is proposed for the case of interval-valued

belief structures. Within the proposed method, two criteria, the max-

imization of observation data’s likelihood and the minimization of

estimated parameter’s uncertainty, are both considered simultane-

ously. The proposed method is effective for both crisp (deterministic)

and interval-valued (uncertain) belief structures, and promising for

various applications.
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2. D–S theory and belief structures

D–S theory (Dempster, 1967; Shafer, 1976) is often regarded as

an extension of the Bayesian theory. Please refer to Shafer (1976)

and Yang and Xu (2013) for more knowledge about D–S theory. In

D–S theory, various belief structures, such as crisp, interval-valued

and fuzzy belief structures, are employed as basic data structures.

They are used to express various uncertain information. A crisp belief

structure is defined as follows.

Definition 1. Let a finite nonempty set � be a frame of discernment,

and 2� denote the power set of �. A crisp belief structure is a mapping

m : 2� → [0, 1], satisfying

m(∅) = 0 and
∑

A∈2�

m(A) = 1 (1)

The crisp belief structure is deterministic because its belief degree

is expressed by real numbers. By contrast, the interval-valued belief

structure (IBS) is a kind of uncertain belief structures, which is an

extension of the crisp belief structure. It is more capable to represent

the uncertain information. Some basic concepts about IBS are given

as below (Wang et al., 2006; Yager, 2001).

Definition 2. Let � be a frame of discernment, F1, F2, . . . , Fn be the n

focal elements on �. An IBS mI satisfies such conditions

1. ai ≤ mI(Fi) ≤ bi, where ai, bi ∈ [0, 1] and i = 1, 2, . . . , n;
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2.
∑n

i=1 ai ≤ 1 and
∑n

i=1 bi ≥ 1;

3. mI(F) = 0, ∀F /∈ {F1, F2, . . . , Fn}.

An IBS is valid if it satisfies
∑n

i=1 ai ≤ 1 and
∑n

i=1 bi ≥ 1. In the rest

of this paper, all the IBSs are valid.

3. Proposed parameter estimation method

In previous literatures (Denoeux, 2013; Su et al., 2013), param-

eter estimation based on crisp and fuzzy belief structures has been

studied. However, the parameter estimation based on interval-valued

belief structures is still an unsettled problem. In this paper, a novel pa-

rameter estimation method based on IBSs is proposed to fill that gap.

Without loss of generality, some concepts about interval probabilities

are introduced first.

3.1. Interval probabilities

Definition 3 (Guo & Tanaka, 2010). Let X be a finite set X =
{x1, . . . , xn}, a set of intervals PI = {Ii = [w−

i
, w+

i
], i = 1, . . . , n} satis-

fying 0 ≤ w−
i

≤ w+
i

≤ 1 is an interval probabilities of X if there are

w∗
i

∈ [w−
i
, w+

i
] for i = 1, . . . , n such that

∑n
i=1 w∗

i
= 1.

Interval probabilities are the extension of point-valued probability

mass functions, which can be degenerated to the classical probability

distribution.

Definition 4 (Guo & Tanaka, 2010). Let PI = {Ii = [w−
i
, w+

i
], i =

1, . . . , n} be an interval probabilities, the αth ignorance of PI , denoted

as Iα(PI), is

Iα(PI) =
∑n

i=1 (w+
i

− w−
i
)α

n
(2)

Obviously, Iα(PI) ∈ [0, 1]. Iα(PI) = 1 for I1 = I2 = · · · = In = [0, 1]

and Iα(PI) = 0 for the point-valued probabilities. I1(PI) can be seen

as an effective index to measure the uncertainty/imprecision of inter-

val probabilities.

3.2. Likelihood function model for IBS

To do the parameter estimation under IBS environment, the like-

lihood function model for IBS should be developed first. Let X be

a discrete random variable taking values in �X = {H1, H2, . . . , Hq},

with interval probabilities pX(·; θ) which depends on unknown pa-

rameter � = {θi = [θ−
i

, θ+
i

], i = 1, . . . , q}. There are several types of

observational data.

If the observational data is completely certain, for example Hi hap-

pened, the likelihood function given a singleton Hi can be represented

as

L(Hi; �) = [θ−
i

, θ+
i

] (3)

If an event F, F ⊆ �X , is observed, the likelihood function given a

subset F is now

L(F; �) = [L−
F , L+

F ] (4)

where

L−
F = max

⎡
⎣∑

Hi⊆F

θ−
i

,

⎛
⎝1 −

∑
Hi 
⊂F

θ+
i

⎞
⎠

⎤
⎦ ,

L+
F = min

⎡
⎣∑

Hi⊆F

θ+
i

,

⎛
⎝1 −

∑
Hi 
⊂F

θ−
i

⎞
⎠

⎤
⎦

If the observational data is described by a piece of uncertain belief

structure — an IBS mI , the likelihood function given such uncertain

Table 1

Observational data represented as crisp belief structures.

Observation 1 2 3 4 5 6

m({a}) 1.0 1.0 1.0 0.3 0.0 0.0

m({b}) 0.0 0.0 0.0 0.3 1.0 1.0

m({a, b}) 0.0 0.0 0.0 0.4 0.0 0.0

Table 2

Results of parameter estimation for the case of crisp belief structures.

Probability p(a) p(b)

Denoeux’s method (Denoeux, 2013) 0.6 0.4

Proposed method (α = 1) 0.6 0.4

Table 3

Observational data represented as IBSs.

Observation 1 2 3 4

mI({H1}) [0.30, 0.40] [0.35, 0.45] [0.10, 0.25] [0.30, 0.45]

mI({H2}) [0.10, 0.25] [0.10, 0.20] [0.30, 0.45] [0.30, 0.50]

mI({H3}) [0.25, 0.35] [0.20, 0.30] [0.35, 0.50] [0.15, 0.40]

mI({H1, H2, H3}) [0.10, 0.20] [0.05, 0.15] [0.10, 0.25] [0.00, 0.20]

Table 4

Results of parameter estimation for the case of IBSs.

α’s value PI(H1) PI(H2) PI(H3) I1(PI)

α = 1 [0.9823, 0.9823] [0.0000, 0.0000] [0.0177, 0.0177] 0.0000

α = 2 [0.8397, 0.9433] [0.0057, 0.1093] [0.0510, 0.1547] 0.1036

α = 3 [0.5821, 0.9331] [0.0122, 0.3632] [0.0547, 0.4058] 0.3510

α = 4 [0.4614, 0.9569] [0.0085, 0.5040] [0.0346, 0.5301] 0.4955

α = 5 [0.2963, 0.8751] [0.0324, 0.6112] [0.0925, 0.6713] 0.5788

α = 6 [0.2580, 0.8907] [0.0288, 0.6615] [0.0805, 0.7132] 0.6327

α = 7 [0.3228, 0.9988] [0.0002, 0.6763] [0.0010, 0.6770] 0.6760

α = 8 [0.2687, 0.9744] [0.0055, 0.7112] [0.0201, 0.7259] 0.7057

α = 9 [0.1876, 0.9136] [0.0235, 0.7496] [0.0629, 0.7889] 0.7260

α = 10 [0.2272, 0.9768] [0.0050, 0.7546] [0.0182, 0.7678] 0.7496

α = 20 [0.1339, 0.9815] [0.0042, 0.8518] [0.0143, 0.8619] 0.8476

data is

L(mI; �) = [L−
mI

, L+
mI

] (5)

where

L−
mI

/L+
mI

= min / max
n∑

i=1

mI(Fi)L
∗
Fi

s.t.
n∑

i=1

mI(Fi) = 1

ai ≤ mI(Fi) ≤ bi, ∀i = 1, . . . , n
L−

Fi
≤ L∗

Fi
≤ L+

Fi
, ∀i = 1, . . . , n

(6)

Now assuming there are p observational data, expressed by p IBSs,

mI = (mI1 , mI2 , . . . , mIp). The likelihood of mI is represented as

L(mI ; �) = [
L−
mI

, L+
mI

] =
[

p∏
i=1

L−
mIi

,

p∏
i=1

L+
mIi

]
(7)

3.3. Solution for parameter estimation

The likelihood function model developed above is the founda-

tion for the parameter estimation based on IBSs. Depending on that,

an optimization model P is proposed to make an estimation for

parameter �.

Model P : arg max
�

D
(
L(mI ; �), [0, 0]

) − Iα
(
�

)
(8)

where Iα
(
�

)
is the αth ignorance of �, and D(L(mI ; �), [0, 0]) is a

distance measure for two intervals L(mI ; �) and [0, 0] presented in
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