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a b s t r a c t

This paper introduces a two-phase approach to solve average cost Markov decision processes, which is
based on state space embedding or time aggregation. In the first phase, time aggregation is applied for
policy optimization in a prescribed subset of the state space, and a novel result is applied to expand
the evaluation to the whole state space. This evaluation is then used in the second phase in a policy
improvement step, and the two phases are then alternated until convergence is attained. Some numerical
experiments illustrate the results.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in the theory and simulation techniques
for Markov decision processes (MDP) (e.g., Busoniu, Ernst,
Schutter, & Babuska, 2010; Cao, Ren, Bhatnagar, Fu, & Marcus,
2002; Chang, Fu, Hu, & Marcus, 2007; Leizarowitz & Shwartz,
2008; Powell, 2007) have led to a growing body of literature on
MDP modeling for real world problems (e.g., Anderson, Boulanger,
Powell, & Scott, 2011; Arruda & do Val, 2008; Pennesi &
Paschalidis, 2010; Zhang & Archibald, 2011). Much of this increased
interest is due, in part, to the development of powerful techniques
to deal with MDPs of very large dimensions, encompassed in a
framework known as approximate dynamic programming (ADP)
(Bertsekas & Tsitsiklis, 1996; Powell, 2007; Sutton & Barto, 1998).

In the context of the ADP framework, there is a vast literature
covering a variety of techniques, such as heuristic search (Hansen
& Zilberstein, 2001) and real-time dynamic programming (Barto,
Bradtke, & Singh, 1995; Bonet & Geffner, 2003), which make use
of asynchronous updates and heuristic search to accelerate conver-
gence, as well as topological value iteration (Dai & Goldsmith,
2007; Dai, Mausam, & Weld, 2009), that processes information
related to the graphical features of MDPs to decide the optimal
ordering of the value function updates. Asynchronous updates

are also exploited in (Akramizadeh, Afshar, Menhaj, & Jafari,
2011; Moore & Atkeson, 1993), while a sequence of increasingly
accurate approximate models is used in (Arruda, Ourique,
LaCombe, & Almudevar, 2013).

Among the most popular ADP techniques one finds value func-
tion approximation (e.g., Arruda, Fragoso, & do Val, 2011; Boyan &
Moore, 1995; Li & Littman, 2010), and simulation coupled with
state space reduction (e.g., Arruda & do Val, 2008; Cao et al.,
2002; Chang et al., 2007). There is a wide range of theory and appli-
cations within the ADP framework covering value function approx-
imation techniques, especially for discounted cost MDP problems
(see, e.g., Powell, 2012). In particular, the abstract representation
of the value function in terms of algebraic decision diagrams
(e.g., Hoey, St-aubin, Hu, & Boutilier, 1999; Joshi & Khardon, 2011;
St-aubin, Hoey, & Boutilier, 2000) can be efficiently used to solve
some large scale discounted MDPs. While much progress has been
made and a few promising directions have been devised (e.g.,
Arruda et al., 2011; Ormoneit & Sen, 2002; Powell, 2007;
Tsitsiklis & Van Roy, 1997), convergence results for general approx-
imation architectures remain to be proved. Moreover, performance
bounds for such techniques tend to be very specialized (e.g.,
Gordon, 1995; Tsitsiklis & Van Roy, 1997; Lin, Hui, Hua-Yong, &
Lin-Cheng, 2009).

State space reduction techniques, known as embedding or time
aggregation, can be traced back, in the context of control theory,
at least to (Zhang & Yu-Chi, 1991), but we shall be particularly
interested in the works of (Cao et al., 2002; Chang et al., 2007;
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Leizarowitz & Shwartz, 2008). It is well known that a great advan-
tage of time aggregation is that, unlike state aggregation (e.g.
Bertsekas, 2012), it preserves the Markov property. As a result, it
can be used to produce an equivalent formulation with reduced
state space. In that context, Fainberg (1986) studied the construc-
tion of embedded MDP models for the total cost criterion, whereas
Leizarowitz and Shwartz (2008) investigated embedding tech-
niques for average cost MDPs. An earlier work, (Cao et al., 2002),
investigated embedding in a scenario where the control policy
within a certain region of the state space is fixed and focused on
reducing the computational burden of the solution procedure. This
approach was later extended to deal with a continuous time
stochastic control problem (Xu & Cao, 2011), and also inspired fur-
ther work on algorithms for embedded (time aggregated) MDPs e.g.,
Ren and Krogh (2005), Sun, Zhao, and Luh (2007), Arruda and
Fragoso (2011). Similar concepts were applied in the context of dis-
count MDPs (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier,
1998), where hierarchical models were employed to decompose
the process. A thorough discussion of compact representations
for MDPs can be found in (Boutilier, Dean, & Hanks, 1999).

The time aggregation approach, which transforms an MDP into
another equivalent MDP with reduced state space, can be of great
assistance when one wishes to find approximate solutions in
reduced computational time. To accomplish such reduction, one
can trade speed for accuracy and specify a priori an outer policy
that prescribes a pure control action to each state outside of a pre-
scribed region of interest F of the state space S. An appropriately
optimized inner policy is then obtained and both outer and inner
policies are composed to result in a sub-optimal policy over S. This
policy minimizes the long term average cost over all control poli-
cies that adopt the prescribed outer policy. Note that optimality
cannot be guaranteed unless the outer policy is optimal, i.e., it is
comprised of optimal control actions for every state in Fc ¼ S n F.
In particular, optimality can be attained for large scale MDPs with
a large number of uncontrollable states, i.e. states for which only a
single control action is available (see Cao et al., 2002).

A distinguishing feature of this paper is that, unlike the current
literature in time aggregation, it addresses also the problem of iter-
atively refining the outer policy. The rationale is simple: to apply
time aggregation iteratively, but refining the outer policy at each
iteration, until the outer policy converges to an optimal outer pol-
icy. At this point, the time aggregation approach is able to retrieve
an optimal policy for the original MDP, over the entire state space
S. The proposed outer policy refinement routine can be seen as a
policy improvement step of the classical policy iteration algorithm
e.g., Bertsekas (2012), which makes use of the value function of the
latest policy obtained by time aggregation. A novel contribution of
this paper is the way we derive this value function, making use of
some new results that are introduced in this paper. Firstly, we
prove that the value function obtained by the time aggregation
algorithm for each state in the subset F is numerically equal to
the value function obtained by a classical policy evaluation
algorithm for this same state. We then make use of this result to
derive the value function for each state in Fc as the value of a
classical stochastic shortest path problem starting from this state
to reach any state in the target region F.

To sum up, we propose a two-phase time aggregation algorithm
to solve MDPs to optimality. The two phases of the algorithm,
which are applied successively up to convergence, work as follows:
in the first phase, time aggregation is applied for some prescribed
outer policy; then in the second phase, a policy improvement step
is applied that refines the outer policy. We prove that the proposed
algorithm converges monotonically to the optimal policy under
general conditions on the structure of the MDP. It is worth pointing
out that the proposed approach can be seen as a variation of the

classical policy iteration algorithm with a policy search in the sub-
set F at each iteration. The policy search is performed by the time
aggregation algorithm, which finds the best possible policy in F
given that the policy in Fc is fixed.

This paper is organized as follows. Section 2 presents the stud-
ied problem. Section 3 features the time aggregation approach and
derives a novel result on the correspondence between the value
functions of the embedded MDP and the original MDP, for a fixed
control policy. This result is then applied in Section 4 to derive a
two phase algorithm for the studied problem. The convergence of
the proposed algorithm to the optimal solution is then proved in
Section 4.1. Numerical experiments are presented in Section 5 to
illustrate the approach, and Section 6 concludes the paper.

2. Preliminaries and the studied problem

Consider a time homogeneous discrete time Markov decision
process (MDP) with a finite, possibly very large, state space S. Let
AðiÞ 2 N denote the set of feasible control actions at state i and
define A :¼ fAðiÞ; i 2 Sg, and suppose that a function
f : S� A! Rþ represents the one-period cost of the process, where
Rþ denotes the set of nonnegative real numbers.

Let L : S! A represent a stationary control policy over the state
space S, and let L be the set of all feasible stationary control poli-
cies. Under policy L, one selects control action a ¼ LðiÞ at each time
the controlled process visits state i 2 S. Following a visit to state
i 2 S, and the application of a control action a 2 AðiÞ, the process
moves to state j 2 S with probability pa

ij. Hence, the evolution of
the controlled processes under a control policy L 2 L is governed
by a Markov chain fXt ; t P 0g, and the one-period transitions are
determined by the transition matrix PL ¼ fpLðiÞij g; i; j 2 S. Following
Cao et al. (2002), we assume that the controlled process is ergodic
under all policies. Assume that the one-period cost function f is a
measurable positive real-valued function and let

gL ¼ lim
N!1

1
N

XN�1

k¼0

f ðXk;LðXkÞÞ ð1Þ

be the long term average cost of the controlled chain. Because the
controlled chain is ergodic, this cost is independent of the initial
state. The objective of the decision maker is to find the optimal
policy L� 2 L, which satisfies

gL
�
6 gL; 8L 2 L: ð2Þ

3. Fixing an outer policy: the time aggregation approach

Now let us select a subset F � S, and define an outer policy
Lout : Fc ! A as the set of control actions prescribed by policy L
for all states outside of F, i.e. Lout ¼ fLðiÞ; i 2 Fcg, where Fc

, S n F
is the complement of F. Similarly, an inner policy
Lin : F ! A;Lin ¼ fLðiÞ; i 2 Fg denotes the control strategy
prescribed by policy L for the subset F. Clearly, we have
L ¼ Lin [ Lout. We let Lin and Lout denote the sets of all feasible
inner and outer policies, respectively. Fig. 1 illustrates the concepts
of inner and outer policies.

Typically the set F is a relatively small subset of S. It may be
comprised, for example, of the states which are more important
from some control standpoint, or the states that are expected to
be visited more frequently under some particular class of control
policies. For example, in a storage control problem, one would
expect the set F to be comprised of the states that are within some
desirable vicinity of the zero-stock state.

Now let us select an outer policy d : Fc ! A; d 2 Lout, a priori and
define the following problem
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