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a b s t r a c t

In this paper, we present a simple method for finding the extreme points of various types of incomplete
attribute weights. Incomplete information about attribute weights is transformed by a sequence of
change of variables to a set whose extreme points are readily found. This enhanced method fails to derive
the extreme points of every type of incomplete attribute weights. Nevertheless, it provides us with a flex-
ible method for finding the extreme points, including widely-used forms of incomplete attribute weights.
Finally, incomplete attribute values, expressed in various forms, are also analyzed to find their character-
izing extreme points by applying similar procedures carried out in the incomplete attribute weights.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The multiple-attribute decision-making (MADM) problems
have been studied extensively over the past several decades. In
general, most of studies are based on precise parameters of the
problems by one of elaborate elicitation methods. Intermittently,
however, attempts emerged to alleviate the burdens of specifying
parameters due to the reasons of time pressure, lack of data and
domain knowledge, limited attention and information processing
capabilities and so on. Of course, prior (sophisticated) methodolo-
gies are advocated if a decision-maker is willing to or able to sup-
ply, with the help of decision analyst, all the information necessary
to solve the MADM problems at hand.

Many earlier studies on incomplete attribute weights are pre-
sented in the context of MADM (Ahn & Park, 2008; Eum, Park, &
Kim, 2001; Kirkwood & Sarin, 1985; Lee, Park, & Kim, 2002;
Mateos, Jiménez, & Ríos-Insua, 2006; Mateos, Jiménez, & Blanco,
2012; Mateos, Ríos-Insua, & Jiménez, 2007; Park, 2004; Puerto,
Mármol, Monloy, & Fernandez, 2000). Examples of incomplete
attribute weights are in the form of weak or strict rankings, differ-
ence rankings, and fixed or ratio bounds. The incomplete informa-
tion about values could occur in practice as well. For a qualitative
attribute, a decision-maker may say an alternative is best (100%),
and another is in the level between 80% and 90% relative to the

level of the first one (Ahn, Park, Han, & Kim, 2000; Kim & Ahn,
1999). This can be expressed in the form of ratio bounds.

To solve MADM problems whose elements are incompletely
known, we rely on one of two approaches: a linear programming
(LP) approach and an extreme point approach. The former attempts
to formulate and then solve the problems which are constrained by
incomplete attribute weights. The extreme point approach, on the
other hand, tries to find the extreme points characterizing the
incomplete attribute weights (Mármol, Puerto, & Fernandez,
1998; Mármol, Puerto, & Fernandez, 2002; Puerto et al., 2000;
Solymosi & Dombi, 1986). Once they are found, dominance rela-
tions between alternatives are established by simply multiplying
extreme points of incomplete attribute weights by performance
evaluations of alternatives in the case that only the attribute
weights are incomplete (see also Section 3 for the case of incom-
plete attribute weights and values). It seems that the extreme
point approach can be better used to test dominance only if they
are easily and completely identified. To this end, Puerto et al.
(2000) presented some formulas to find the extreme points of
widely-used incomplete attribute weights. For more details, please
also refer to the papers (Mármol et al., 1998; Mármol et al., 2002;
Puerto et al., 2000; Shepetukha & Olson, 2001).

In this paper, we present a simple method for finding the
extreme points of incomplete attribute weights by the change of
variables, which has some merits as follows. First of all, the pro-
posed method is easy to apply but the results are equivalent to
those of Puerto et al. (2000). The method rather encompasses a
type of incomplete information such as multi-levels of preference
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differences (Section 2.5). Second, the proposed method is readily
extendable to cover other types of incomplete attribute weights
beyond the ones mentioned in the paper. An example is illustrated
at the end of Section 2. Moreover, the change of variable technique
can be effectively used to address bounded descriptions. Finally,
incomplete attribute values, expressed in various forms, are also
analyzed to find their characterizing extreme points by applying
similar procedures carried out in the incomplete attribute weights.
These findings complete a study on the extreme point-based
MADM under incomplete information. A practical use of extreme
points of strict preferences in Section 3.1, for example, is to repre-
sent judgments induced by the rank order. Thus we can analyze a
qualitative multi-criteria decision-making problem where each
alternative is assigned a rank position and multiple criteria are
ordinally ranked in terms of relative importance in a slightly differ-
ent context with Cook and Kress (1996).

The paper is comprised of two main sections. Sections 2 and 3
describe how to find the extreme points of incomplete attribute
weights and values respectively. A numerical example is illustrated
in Section 4, followed by concluding remarks in Section 5.

2. Identifying extreme points of incomplete attribute weights

In MADM problems, one usually considers a finite discrete set of
alternatives A = {x1, x2, . . ., xm}, which is valued by a finite discrete
set of attributes C = {c1, c2, . . ., ck} where m is the number of alter-
natives and k the number of attributes. We assume an additive
model, which is considered a valid approximation in most real
decision-making problems (Stewart, 1996), and is widely used
within multi-attribute value theory (MAVT) (Keeney & Raiffa,
1993; von Winterfeldt & Edwards, 1986),

VðxiÞ ¼
Xk

j¼1

kjv jðxijÞ

where V(xi) is the overall multi-attribute value of alternative xi with
attribute levels ðxi1; . . . ; xikÞ;0 6 VðxiÞ 6 1; i ¼ 1; . . . ;m; kj is a
weighting coefficient such that

Pk
j¼1kj ¼ 1; kj P 0; j ¼ 1; . . . ; k; vj(�)

is a single attribute value of alternatives with respect to jth attri-
bute, j = 1, . . ., k, 0 6 vj(�) 6 1.

Let K denote a set of incomplete attribute weights and Vj a set
of outcomes on the jth attribute, that is, the values of vj(�) for
alternatives such that Vj = {vj(x1j), vj(x2j), . . ., vj(xmj)}. According to
pairwise dominance, alternative xp dominates xq if for any fixed
set of feasible weights the worst outcome in xp at least exceeds
the best outcome in xq (Salo & Hämäläinen, 1992; Weber, 1987).
Specifically, alternative xp is at least preferred to xq if and only if
PD(xp, xq) P 0 where

PDðxp; xqÞ ¼min
Xk

j¼1

kjdj xp; xq
� �

kj 2 K
��( )

; ð1Þ

dj xp; xq
� �

¼min v j xpj
� �

� v j xqj
� �

v j 2 Vj

��� �
:

In the paper, we assume that the importance of attributes is speci-
fied by one of various types of incomplete attribute weights, which
are listed in accordance with the development by Puerto et al.
(2000): (a) lower bounds on the weighting coefficients, (b) rank
ordered attributes, (c) ratio scale inequalities among attributes,
and (d) rank ordered attributes with discriminating factors. In
addition to these incomplete attribute weights, we append (e)
multi-levels of preference differences,1 which can be subsequently

constructed based on the rank ordered attributes. See also the paper
for extensive examples of incomplete attribute weights by Park
(2004). Given these incomplete attribute weights, the proposed
method attempts to find all extreme points for each case by the
change of variables.

2.1. Lower bounds on the weighting coefficients (LB)

A set of lower bounds on the weighting coefficients is denoted
by KLB:

KLB ¼ k : kj P aj P 0; j ¼ 1; . . . ; k;
Xk

j¼1

kj ¼ 1

( )
where

Xk

j¼1

aj 6 1:

If the sum of lower bounds equals to one, say
Pk

j¼1aj ¼ 1, we find
only one valid extreme point k = (a1, a2, . . ., ak). Otherwise, we
make the change of variables lj = kj � aj P 0, j = 1, . . ., k, which
consequently leads to a set MLB in terms of lj, noting that

the sum to unity constraint
Pk

j¼1kj ¼ 1 is transformed intoPk
j¼1lj ¼ 1�

Pk
j¼1aj > 0:

MLB ¼ l : lj P 0; j ¼ 1; . . . ; k;
Xk

j¼1

lj ¼ 1�
Xk

j¼1

aj > 0

( )
:

If we make a further change of variables cj ¼ lj=ð1�
Pk

j¼1ajÞ;
j ¼ 1; . . . ; k, the set MLB is equivalently transformed to CLB in terms
of cj:

CLB ¼ c : cj P 0; j ¼ 1; . . . ; k;
Xk

j¼1

cj ¼ 1

( )
:

Then we easily find the extreme points of CLB as an identity matrix
I = (e1, e2, . . ., ek) where ej is a unit column vector whose jth element
is one and zero elsewhere. To find the extreme points in terms of k j,

which is our final goal, we multiply each ej by a scalar ð1�
Pk

j¼1ajÞ
to maintain lj ¼ ð1�

Pk
j¼1ajÞcj, thus yielding ð1�

Pk
j¼1ajÞej and

then we add a column vector a = (a1, a2, . . ., ak)0 to each

ð1�
Pk

j¼1ajÞej to maintain kj = lj + aj. These operations finally pro-

duce the extreme points as follows: k1 ¼ 1�
Pk

j¼1;j–1aj

� �
;

�
a2; . . . ;ak

�
; k2 ¼ a1; 1�

Pk
j¼1;j–2aj

� �
;a3; . . . ;ak

� �
; . . . ; kk�1 ¼

�
a1; . . . ;

ak�2; 1�
Pk

j¼1;j–k�1aj

� �
;ak

�
; kk ¼ a1; . . . ;ak�1; 1�

Pk
j¼1;j–kaj

� �� �
.

2.2. Rank ordered attributes (RO)

A set of rank ordered attributes, which is one of the most widely
used types of incomplete attribute weights, is denoted by KRO:

KRO ¼ k : k1 P k2 P � � �P kk P 0;
Xk

j¼1

kj ¼ 1

( )
:

To start with, we introduce new variables l = (l1, l2, . . ., lk) to
denote lj = kj � kj+1 P 0, j = 1, . . ., k � 1, lk = kk P 0 and rearrange
them to obtain kk = lk, kk�1 = lk�1 + lk, kk�2 = lk�2 + lk�1 + lk, . . .,

k1 = l1 + l2 + � � � + lk, noting that
Pk

j¼1kj ¼
Pk

j¼1j � lj ¼ 1. These sub-
stitutions consequently lead to an equivalent set MRO in terms of lj:

MRO ¼ l : lj P 0; j ¼ 1; . . . ; k;
Xk

j¼1

j � lj ¼ 1

( )
:

We now make a further change of variables cj = j � lj, j = 1, . . ., k to
transform MRO into CRO, which enable us to obtain a set of extreme
points with ease

1 Some authors refer to it as ordered metric (Kmietowicz & Pearman, 1982;
Pearman, 1993).
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