European Journal of Operational Research 240 (2015) 32-42

journal homepage: www.elsevier.com/locate/ejor

Contents lists available at ScienceDirect

European Journal of Operational Research |

=

UROPEAN JOURNAL OF
PERATIONAL ESEARCH

Discrete Optimization

Heuristics and lower bounds for the simple assembly line balancing

@ CrossMark

problem type 1: Overview, computational tests and improvements

Tom Pape *

Clinical Operational Research Unit, University College London, 4 Taviton Street, WC1H OBT London, UK

ARTICLE INFO ABSTRACT

Article history:

Received 24 November 2012
Accepted 19 June 2014
Available online 1 July 2014

Keywords:

Heuristic

Lower bound

Assembly line balancing
Reduction technique
Partitioning problem

Assigning tasks to work stations is an essential problem which needs to be addressed in an assembly line
design. The most basic model is called simple assembly line balancing problem type 1 (SALBP-1). We pro-
vide a survey on 12 heuristics and 9 lower bounds for this model and test them on a traditional and a
lately-published benchmark dataset. The present paper focuses on algorithms published before 2011.
We improve an already existing dynamic programming and a tabu search approach significantly. These
two are also identified as the most effective heuristics; each with advantages for certain problem char-
acteristics. Additionally we show that lower bounds for SALBP-1 can be distinctly sharpened when merg-
ing them and applying problem reduction techniques.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Assembly lines are a common way to organise mass production
of standardised products. They consist of ordered stations along a
conveyor belt to which a set of tasks is assigned to. The cycle time
determines how much time the stations’ workers and/or machines
have to fulfil their tasks before passing on the workpiece to the
next following station.

The simple assembly line balancing problem type 1 (SALBP-1) is
a fundamental and well-studied problem of assembly line design
(Baybars, 1986; Scholl, 1999). The tasks j=1,...,n are defined by
task times ¢; and their positions within the precedence graph.
The goal is to minimise m as number of loaded stations given a
fixed cycle time c. A list of all used symbols can be found in Table 1.
Fig. 1 illustrates SALBP-1 exemplarily. The nodes (tasks) of the pre-
cedence graph are indexed from 1 to 8 and above them stand their
task times t;. For SALBP-1 a solution is feasible if (i) the tasks of
each station do not have a task time sum larger than ¢ and (ii)
no direct or indirect predecessor of any task j is assigned to a later
station thanj is assigned to. The shaded regions identify a possible
feasible solution with 4 stations. If one turns around the arrows’
directions in the precedence graph, one receives the reverse prob-
lem. A solution of the reverse problem (backward direction) is
always a feasible solution of the original SALBP-1 (forward direc-
tion) after turning around the station order.

* Tel.: +44 7440153248.
E-mail address: t.pape@ucl.ac.uk

http://dx.doi.org/10.1016/j.ejor.2014.06.023
0377-2217/© 2014 The Author. Published by Elsevier B.V.

Many general assembly line balancing problems (GALBPs) base
on this simple logic and extend it, for example, with ergonomic
considerations, space restraints and mixed-model production.
Therefore algorithms should be analysed properly on their effec-
tiveness on SALBP-1 before adapting them to more sophisticated
GALBPs. Comparing the effectiveness of procedures only with the
results reported in their original papers may be distorting due to
different computational environments, incomparable CPU times,
or different datasets. This explains the need for thoroughly con-
ducted comparing studies. By now those exist only for some exact
procedures (Baybars, 1986; Scholl & Klein, 1999), simple algo-
rithms (Ponnambalam, Aravindan, & Mogileeswar Naidu, 1999)
and priority rules (Otto, Otto, & Scholl, 2014; Scholl & Vo3, 1996).

SALBP-1 is NP-hard (Karp, 1972), so that heuristics are essential
to obtain upper bounds for problems. Furthermore in order to
assess the quality of found solutions, lower bounds methods are
important in integer optimisation. Closing the research gap by a
comparing study of upper and lower bounds for SALBP-1 is the first
and main goal of this paper.

The second goal is the improvement of some already-known
procedures, namely tabu search, dynamic programming, lower
bound 7 and 8, as well as SALBP-1 reduction techniques. It will also
be discussed how to use problem reduction techniques for sharp-
ening lower bounds.

As benchmark dataset this study uses the collection of 269
instances from Scholl (1993) as well as the new systematically-
generated 100-tasks and 1000-tasks problems from Otto, Otto,
and Scholl (2013) denoted as SCHOLL, OTTO-100 and OTTO-1000,
respectively, in the following. By now, there has not been thor-

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.06.023&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.ejor.2014.06.023
http://creativecommons.org/licenses/by/3.0/
mailto:t.pape@ucl.ac.uk
http://dx.doi.org/10.1016/j.ejor.2014.06.023
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

T. Pape/European Journal of Operational Research 240 (2015) 32-42 33

Table 1
Symbols for SALBP-1.
c Cycle times
j Index of the tasks
J(a, b] Set of all tasks with a<p;<b
k Index of the stations
m Number of stations
n Number of tasks
D Gl

(Direct) predecessors of j

(Direct) successors of j

—~
SR

~—
o

%]
~

Load of station k
Task time of j

<

c=10
5 1 2
5

station3

station 1 3

station 2 station 4

Fig. 1. SALBP-1 with a grey-shaded solution.

oughly investigated in how far the success of SALBP-1 algorithms
depends on the problem properties. Finding an answer to this
question is the paper’s third goal.

The article is organised as follows: Section 2 outlines the “Gen-
eral idea” of each examined heuristic briefly, states some “Experi-
ence” the author made during implementation and describes
methodical improvements for some approaches. The “General
ideas” require some knowledge about standard solution proce-
dures in operational research and the “Experience” can usually
not be fully understood without having read the original papers
before. Section 3 explains the improvements proposed for lower
bounds. Section 4 reports the computational result. Section 5 sum-
marises and discusses the main findings.

2. Heuristics
2.1. Falkenauer and Delchambre (1992): GA-FD

General idea: Falkenauer and Delchambre designed a genetic
algorithm (GA) in which the genes are the station loads of the solu-
tion (chromosome). Thereby the genes on the chromosome are not
necessarily ordered in the sequence of the stations in the final solu-
tion. Instead the precedence relations between the genes are kept
in an additional genes’ precedence graph. This encoding technique
is called group encoding. Falkenauer and Delchambre apply some
of the usual genetic operators on the genes to obtain improved
children. Thereby they use a fitness function which rewards well-
filled stations more than it punishes less filled ones in a solution.
After crossover the children become usually infeasible since tasks
are assigned to more than one station and the precedence relations
are violated. A complex healing process must follow therefore.

Experience: Falkenauer and Delchambre’s proposed strategy to
make children feasible (eliminating cycles in the genes’ precedence
graph) needed often more than 500,000 iterations (>1 minute CPU
time) on OTTO-100 just to obtain one new solution. In our experi-
ments, the time limit was often reached before repairing the chil-
dren of the first crossover.

2.2. Sabuncuoglu, Erel, and Tanyer (2000): GA-S

General idea: Sabuncuoglu et al. introduce a genetic algorithm in
which the tasks as genes are always ordered on the chromosome in
a sequence that obeys the precedence graph (order encoding). They
apply a crossover technique which completely avoids infeasibility.
In contrast to GA-FD, chromosomes with equally loaded stations
receive the highest fitness score. Additionally they apply a freezing
technique which finalises the task assignments of the current first
and last unfrozen station if they provide satisfying loads. It shall be
noted that a better performing hybrid genetic algorithm incorpo-
rating priority rules and local search is published in Gongalves
and De Almeida (2002).

Experience: Due to the smart crossover technique, GA-S is fast in
creating new solutions (about 5000 per second on OTTO-100). The
freezing often leads to a search stop before reaching an optimal
solution or the given time limit. In those cases we revoke the algo-
rithm with a twice that strict freezing policy. After preliminary tests
we chose a population size of 100, a mutation probability of 1%, a
final replacing probability of 1%, and an initial freezing parameter
DPC of 10% which halves itself every time all stations are frozen.

2.3. Nearchou (2005): DEA

General idea: Nearchou designed a differential evolutionary
algorithm (DEA) to tackle SALBP-1. We assume that learning about
the tasks’ variability concerning their positions in good solutions is
its main idea. The solutions (chromosomes) are sub-range encoded
what can be linearly transformed into order encoding. Sub-ranges
express an order position of a task by small float-point intervals
between O and 1. For instances the solution (0.4,0.32,0.7) basing
on the sub ranges [0,1) — 1, [},2) — 2 and [2,1) — 3 would mean
an order encoding (2,1,3). Crossover works like in genetic algo-
rithms, just mutation — which is performed in every iteration - is
done differently. Given three sub-range encoded solutions x,, X,
x. of the population as vectors, one receives the mutant with x,,, = -
Xc +W(x, — Xp) where w denotes a small weight. Solutions after
mutation and crossover need to be healed of infeasibility.

Experience: Repairing infeasible solutions makes up 85% of the
CPU time and leads to a low number of created solutions per sec-
ond (about 60 per second on OTTO-100). For the parameters w,
crossover probability and population size we opted for 0.3, 1 and
100, respectively, after some tests. Nearchou demands a replace-
ment of some solutions when the population becomes too homo-
geneous but does not define how he measures homogeneity.
Therefore, we replace one solution from the bottom half of the
population space according to their fitness with a new random
one after every five iterations.

2.4. Bautista and Pereira (2002): ACO

Bautista and Pereira test several versions of ant colony optimi-
sation (ACO) for SALBP-1. Here only Bautista and Pereira’s best ver-
sion (task-position policy, summed trail reading) is described and
implemented. Very similar designs can be found in Boysen and
Fliedner (2008) and Zhang, Cheng, Tang, and Zhong (2007). An
ant colony algorithm which strongly relies on a local search is pub-
lished in Bautista and Pereira (2007).

General idea: Solutions are order encoded, and between each
task j and each order position o exists a pheromone trail tj,. Solu-
tions are constructed either in forward or in backward direction by
adding one task after another. To select the next task for order
position o from all those without unassigned predecessors, a rou-
lette wheel selection based on the task preferences is conducted.
The task preference is the weighted product of the pheromone
trails from order position 1 to 0, i.e. ¥>°_, Tjo, and a normalised task

Download English Version:

https://daneshyari.com/en/article/6897128

Download Persian Version:

https://daneshyari.com/article/6897128

Daneshyari.com

https://daneshyari.com/en/article/6897128
https://daneshyari.com/article/6897128
https://daneshyari.com

