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a b s t r a c t

We consider a random yield inventory system, where a company has access to real time information
about the actual yield realizations. To contribute to a better understanding of the value of this informa-
tion, we develop a mathematical model of the inventory system and derive structural properties. We
build on these properties to develop an optimal solution approach that can be used to solve small to
medium sized problems. To solve large problems, we develop two heuristics. We conduct numerical
experiments to test the performances of our approaches and to identify conditions under which real time
yield information is particularly beneficial. Our research provides the approaches that are necessary to
implement inventory control policies that utilize real time yield information. The results can also be used
to estimate the cost savings that can be achieved by using real time yield information. The cost savings
can then be compared against the required investments to decide if such an investment is profitable.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider an inventory system, where replenishment orders
are subject to random yield. Random yields are an important issue
in many procurement, production, and assembly processes (Yano &
Lee, 1995). In the food or chemical cold chain, for instance, prod-
ucts are shipped over long distances in refrigerated containers. If
the temperature of the product leaves a certain range, the product
is spoiled and must be re-ordered. Another example is the semi-
conductor industry, where production steps are subject to random
yield (Wang, 2009).

Recently, technologies have been developed that collect and
transmit data about the state of a product in the order pipeline.
In cold chains, smart sensors are used to monitor the temperature
of products and to inform customers immediately if the tempera-
ture leaves a pre-defined range (Zacharewicz, Deschamps, &
Francois, 2011). White and Cheong (2012), for instance, consider
a food supply chain that requires this type of supply chain visibil-
ity. They quantify the benefit of observing the quality of a perish-
able product that is processed in multiple steps from origin to
destination. At each step during the journey the decision has to
be made whether or not to inspect the quality of the product at a
certain cost and whether or not to continue the transport. More

application examples of technologies that enable real time yield
information sharing in this context can be found in Hsueh and
Chang (2010).

Real time yield information is also relevant in production
processes. Consider a supplier that manufactures a product in
several production steps, where each step has random yields. The
customer of the supplier considers this risk when placing orders
with the supplier and therefore determines the input quantity for
the supplier’s first production step. The supplier holds no inventory
(except work in progress) and shares yield information after each
production step with the customer. Gavirneni (2004), Inderfurth
and Vogelgesang (2013), and Wang (2009) provide details of such
a process in the semiconductor industry. Choi, Blocher, and
Gavirneni (2008), for instance, consider real time yield information
sharing in such a context. However, collecting and transmitting
real time yield information requires investments in information
technology. To decide whether or not such investments are
profitable, the value of using real time yield information must be
quantified and we address this topic in this paper.

Research on random yield inventory models can be traced back
to Karlin (1958). Karlin (1958) considers a single period inventory
system where the yield of an order is a random variable with a
known distribution and where order decisions are binary. The
structure of the optimal random yield policy for inventory systems
with zero lead time has been derived by Gerchack, Vickson, and
Parlar (1988) and Henig and Gerchak (1990). Gerchack et al.
(1988) analyze a finite horizon periodic review problem and show
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that the optimal policy is complex and not myopic. They determine
the optimal solution by dynamic programming. Henig and Gerchak
(1990) derive structural results for the finite and infinite horizon
problems and show that there exists a threshold for each period,
such that an order is placed if and only if the on-hand inventory
is below the threshold value. They show that the threshold is
higher under stochastic yield than under deterministic yield. An
overview of periodic review systems with random yield can be
found in Yano and Lee (1995).

Because large problems cannot be solved optimally in reason-
able time, research has also addressed the development of random
yield heuristics. Many of these heuristics rely on myopic linear
inflation policies (Huh & Nagarajan, 2010). These policies use an
order threshold and an inflation factor: If the inventory level is
below the order threshold, then the difference between the order
threshold and the inventory level multiplied by an inflation factor
is ordered. A seminal article in this area is by Bollapragada and
Morton (1999). They develop three myopic heuristics that are
based on the solution of a newsvendor model with random yield.
For a discounted cost model, Li, Xu, and Zheng (2008) develop
upper and lower bounds for the optimal order threshold and the
order quantity. They use these bounds in a heuristic that outper-
forms the heuristics of Bollapragada and Morton (1999). Huh and
Nagarajan (2010) show how the optimal order threshold of a linear
inflation policy can be computed for a given inflation factor.

The existing literature on optimal and heuristic solutions con-
siders models with zero lead time, an assumption under which real
time yield information sharing is not an issue. In inventory systems
with positive lead times, real time yield information sharing can
improve performance. To our best knowledge, Choi et al. (2008)
is the only article that analyzes the value of real time yield infor-
mation sharing in settings with positive lead times. They consider
a supply chain with a single supplier and a single manufacturer.
The supplier uses a manufacturing process with two processing
steps with random yields. Translated to a supply chain setting,
their model corresponds to an inventory model with a lead time
of three periods, where the first two periods are subject to random
yield. To solve the model, Choi et al. (2008) modify one of the
heuristics of Bollapragada and Morton (1999).

We also consider a model with positive lead time and allow for
an arbitrarily long lead time. Unlike previous research, we derive
structural properties of the objective function and prove the
existence of a stationary optimal policy for the infinite horizon
problem. We show that the objective function is convex and build
on this property to optimally solve small and medium sized prob-
lems. To solve large problems, we develop two heuristic solution
approaches based on linear inflation policies. The first heuristic
builds on the MULT-heuristic that was first proposed by Ehrhardt
and Taube (1987). The second heuristic is based on the work of
Huh and Nagarajan (2010). We provide numerical results that
indicate that our heuristics perform well in a variety of settings
and we identify conditions under which real time yield informa-
tion is particularly beneficial.

Related to our research is the research on RFID. For a compre-
hensive literature review we refer to Lee and Özer (2007), Ngai,
Moon, Riggins, and Yi (2008), and Sarac, Absi, and Dauzère-Pérès
(2010). For a literature review on applications of RFID technology
we refer to Zhu, Mukhopadhyay, and Kurata (2012). To analyze
the value of increased supply chain transparency few analytical
models have been developed. Our paper derives an analytical
model and quantifies the value of real time yield information and
we contribute to the filling of the frequently cited credibility gap
of the value of RFID (Lee & Özer, 2007; Sari, 2010).

The remainder of the paper is organized as follows. In Section 2,
we develop a dynamic program for a periodic review inventory
system with random yields. In Section 3, we discretize the state

space and use a Markov decision process to compute the optimal
solution. In Section 4, we develop heuristic solution approaches.
In Section 5, we provide numerical results. In Section 6, we discuss
the value of real time yield information in detail. In Section 7, we
extend our analysis for the case where fixed order cost is charged.
In Section 8, we conclude. All proofs can be found in the appendix.

2. Model formulation

We first consider a supply chain with real time yield information
sharing (Section 2.1) and analyze the finite horizon version
(Section 2.1.1) and the infinite horizon version (Section 2.1.2) of
the problem. We consider both versions of the problem, because
each version has properties beneficial in our analyses. For the finite
horizon version, we prove the convexity of the value function. We
build upon this property to derive the stationary optimal policy for
the infinite horizon version, which allows us to compute the optimal
expected cost with arbitrary accuracy. One of our objectives is to ana-
lyze the value of using real time yield information, which requires us
to compare the cost of a supply chain that utilizes real time yield
information with the cost of a supply chain that does not utilize this
information. Therefore, we also analyze a supply chain without real
time yield information (Section 2.2), again for both the finite horizon
version and the infinite horizon version of the problem.

2.1. Model with real time yield information

Consider a single manufacturer who places orders with a single
supplier. The demand dt of the product is stochastic and i.i.d. across
periods. We denote the order quantity in period t by Ot and orders
arrive after a lead time of k periods. In each lead time period, orders
are subject to random yields. The yield rate of lead time period r
(r = 1, . . . ,k) in period t is ur,t. Order Ot�k placed in period t � k expe-
riences k random yields and the replenishment quantity Qt�k in
period t is Qt�k = uk,t�1 uk�1,t�2 � � � u1,t�kOt�k. The yield rates ur,t are
i.i.d. over time and can be arbitrarily distributed. For ease of pre-
sentation, we will drop the index t in ur,t whenever it is appropri-
ate. This yield model is commonly used to analyze the random
yield inventory problem, e.g. Choi et al. (2008), Ehrhardt and
Taube (1987), and Gerchack et al. (1988).

The sequence of events in each period is as follows: First, the
manufacturer observes the current state of the inventory system
zt = (ILt,Qt�k, . . . ,Qt�1), which consists of the inventory level ILt and
the current yield of the k outstanding orders (Fig. 1). Then, the man-
ufacturer decides on the order quantity of the current period and
orders, Ot. Next, the manufacturer receives the order that was placed
k periods ago, Qt�k. The manufacturer satisfies demand and backor-
ders excess demand. Based on the net inventory ILt+1 at the end of
period t, backorder or inventory holding costs are charged. With this
sequence of events, there are k + 1 state variables. The intricate
dynamics make it impossible to reduce the state to a single variable.
All notation is summarized in Appendix A.

2.1.1. Finite horizon model
We formulate the finite horizon version of the optimization

problem as a dynamic program. Given the current state zt, the
objective is to determine the order quantities for the current and
all future periods, such that the sum of expected inventory holding
and backorder costs is minimized:

VtðztÞ ¼ min
OtP0

Htðzt ;OtÞ; ð1Þ

with Htðzt ;OtÞ ¼ Edt ½CðILt þQ t�k � dtÞ� þ cEu1;t � � �Euk;t Edt ½Vtþ1ðztþ1Þ�:

c denotes the discount factor. Without loss of generality, we
assume that VT+1(zT+1) = 0. The total cost function Ht (zt, Ot) is the
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