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a b s t r a c t

This paper implements and tests a label-setting algorithm for finding optimal hyperpaths in large transit
networks with realistic headway distributions. It has been commonly assumed in the literature that
headway is exponentially distributed. To validate this assumption, the empirical headway data archived
by Chicago Transit Agency are fitted into various probabilistic distributions. The results suggest that
the headway data fit much better with Loglogistic, Gamma and Erlang distributions than with the
exponential distribution. Accordingly, we propose to model headway using the Erlang distribution
in the proposed algorithm, because it best balances realism and tractability. When headway is not
exponentially distributed, finding optimal hyperpaths may require enumerating all possible line
combinations at each transfer stop, which is tractable only for a small number of alternative lines. To
overcome this difficulty, a greedy method is implemented as a heuristic and compared to the brute-force
enumeration method. The proposed algorithm is tested on a large scale CTA bus network that has over
10,000 stops. The results show that (1) the assumption of exponentially distributed headway may lead
to sub-optimal route choices and (2) the heuristic greedy method provides near optimal solutions in
all tested cases.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Thanks to the revolution in information technology, many tran-
sit agencies now have the capability to track their entire fleets,
make short-term projections, archive the data and distribute pas-
senger information, all in real time. BusTracker of Chicago Transit
Authority (CTA), for example, employs GPS-based automatic vehi-
cle location (AVL) data to project the arrival times of the next tran-
sit vehicle at any stop on any route. Similar passenger information
systems can be found in other major US cities, such as New York
and Washington, DC. These new systems not only enable passen-
gers to use transit information in the real time, but also make avail-
able a large amount of operational data that can be used to support
better routing and planning decisions. For example, several studies
have explored the possibility of using transit AVL data for the pur-
pose of probing traffic conditions (Bertini & Tantiyanugulchai,
2004; Chakroborty & Kikuchi, 2004; Pu & Lin, 2008).

This paper will first show that these newly emerging data
sources can be used to quantify the irregularities in transit services,
in particular headway. Then, a transit routing algorithm that incor-
porates such empirically observed service irregularities will be

implemented and tested to help passengers save travel time and
improve travel reliability.

The transit routing algorithm developed in this study is built on
the notion of hyperpath. A hyperpath represents a sequence of rout-
ing strategies rather than a simple path consisting of stops. Routing
based on hyperpath promises to make better use of availability of
alternative lines in the transit systems. It also offers the flexibility
to incorporate real-time information, such as the arrival times of
all transit vehicles approaching a stop. It is worth noting that the
boarding decision at a stop depends on the waiting time as well
as the remaining travel time to the destination once the selected
transit line is boarded. This remaining travel time, in turn, is
affected by future events such as waiting at subsequent transfers
and travel between stops. As a result of service irregularities, the
remaining travel time may not be reliably estimated based on
the published schedule. Accordingly, decisions have to be made
according to what are likely to happen in the future. In light of this
observation, the proposed tool copes with uncertainty by choosing
an optimal hyperpath to minimize the expected journey time.

Hyperpath based transit routing algorithms have been studied
extensively in the literature; see the next section for a brief review.
Unlike most existing algorithms, however, the proposed algorithm
will operate on realistic headway distributions calibrated from
archived trajectory data. It has been commonly assumed in the
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literature that headway is exponentially distributed. With this sim-
plifying assumption all headway distributions can be fully charac-
terized without using any trajectory data, since the standard
deviation and mean of the exponential distribution are equal and
can be reliably estimated using the scheduled headway. Moreover,
exponentially distributed headway reduces the efforts for obtain-
ing expected waiting times and boarding probabilities at transfers
to closed form calculation.

To validate this assumption, the empirical headway data
archived by CTA’s BusTracker Application are fitted into various
distributions. The results suggest that the headway data fit much
better with Loglogistic, Gamma and Erlang distributions than with
the exponential distribution. Accordingly, we propose to model
headway using the Erlang distribution in the proposed algorithm.
This choice reduces the calculation of expected waiting time and
line boarding probabilities to manageable one-dimensional
numerical integration. When headway is not exponentially distrib-
uted, finding optimal hyperpaths may require enumerating all pos-
sible line combinations at each transfer stop, which is tractable
only if the number of alternative transit lines is small. To overcome
this difficulty, efficient heuristic methods are implemented and
compared to the exact method based on enumeration. The algo-
rithms is tested on the CTA bus network, which has over 10,000
stops. We found, among other things, that the assumption of expo-
nentially distributed headway may lead to sub-optimal route
choices.

The rest of the paper proceeds as follows. Section 2 briefly
reviews the literature on the hyperpath problem in transit routing.
Section 3 presents the basic analysis of common-lines problem
with general headway distributions, as well as the algorithms for
finding optimal paths in a transit network. Section 4 describes
the sources of headway data and discusses the fitting procedure
and results. Section 5 presents the results of numerical experi-
ments, including hyperpath routing in a large-scale CTA bus net-
work. Section 6 concludes the paper.

2. Literature review

The concept of hyperpath appears to originate from the study of
common bus lines by Chriqui and Robillard (1975). This seminal
paper shows that passengers can select a set of attractive lines
and board the first arriving bus in that set in order to minimize
the expected total travel time. Spiess and Florian (1989) extends
this notion of strategy to a general transit network, namely, the
choice of an attractive set of lines is considered at each node where
boarding occurs. Nguyen and Pallottino (1988) interpret the above
strategy as a hyperpath, which is an acyclic directed graph. They
propose both label correcting and label setting algorithms for find-
ing the optimal hyperpaths between a pair of nodes. Volpentesta
(2008) proposes a polynomial algorithm to solve one-to-all and
one-to-one hyperpath problem. The above hyperpath routing
model has been extended and incorporated by many into transit
assignment (see e.g. Nguyen & Pallottino, 1988). These studies
mostly focus on the interactions between transit route choice and
congestion effects (overcrowding), which may be modeled through
the effective frequency approach (Spiess & Florian, 1989; de Cea &
Fernández, 1993; Wu, Florian, & Marcotte, 1994; Cominetti &
Correa, 2001; Cepeda, Cominetti, & Florian, 2006), explicit capacity
constraints (Marcotte & Nguyen, 1998; Hamdouch, Marcotte, &
Nguyen, 2004; Teklu, 2008), failure-to-board probabilities
(Kurauchi, Bell, & Schmöcker, 2003; Schmöcker, Bell, & Kurauchi,
2008; Schmöcker, Fonzone, Shimamoto, Kurauchi, & Bell, 2011),
and the queueing theory (Trozzi, Hosseinloo, Gentile, & Bell, 2010;
Trozzi, Gentile, Bell, & Kaparias, 2013). Nguyen, Pallottino, and
Gendreau (1998) propose a transit assignment model that

distributes flows on optimal hyperpaths using a logit model, which
may be viewed as an extension of Dial’s celebrated STOCH algorithm
(Dial, 1979) in transit networks. The focus of their work, however, is
to develop an efficient loading procedure to obviate path enumera-
tion, rather than modeling congestion effects. More recently,
DAcierno, Gallo, and Montella (2010) apply an ant-colony optimiza-
tion (ACO) algorithm (see e.g. DAcierno, Montella, & De Lucia, 2006)
to solve the hyperpath-based traffic assignment problem. Their
study compares the efficiency of ACO algorithm with that of the
Method of Successive Averages (MSA). We note that there is another
class of models that perform transit assignment based on detailed
schedule instead of average frequency. Since this paper is focused
on the frequency-based approach, we refer the reader to Tong and
Wong (1998) and Wilson and Nuzzolo (2008) for details of this line
of work.

Bell (2009) adapts the hyperpath concept to model the reliable
routing problem, by interpreting random road travel times as the
analogy of the waiting times for transit lines. A hyperpath version
of the popular A-star algorithm, known as the hyperstar algorithm,
is developed and later extended to the time-dependent case
(Bell, Trozzi, Hosseinloo, Gentile, & Fonzone, 2012). Schmöcker,
Bell, Kurauchi, and Shimamoto (2009) show that the set of paths
generated by a multi-agent, zero-sum game in a network with ran-
dom road travel time is equivalent to the hyperpath of transit
assignment. More recently, Ma, Fukuda, and Schmöcker (2012)
explore and compare a variety of implementation issues associated
with the hyperstart algorithm, and Noh, Hickman, and Khani
(2012) integrate the concept of hyperpath with a schedule-based
transit network representation. extend schedule-based transit
model to a dynamic transit assignment problem where travel
demand is time-dependent.

Central to the hyperpath finding problem is the calculation of
expected waiting time at stops. Early studies indicate that the
expected waiting time for a single transit line can be estimated
from the mean and variance of headway (see e.g. Welding, 1957;
Holroyd & Scraggs, 1966; Osuna & Newell, 1972; Seddon & Day,
1974). When multiple lines are present, the expected waiting time
depends on the probability of taking each line, i.e. the route choice
probability, which in turn is affected by the availability of informa-
tion, routing strategy and headway distributions. In most litera-
ture, the route choice probability is derived from frequencies of
each routes (see e.g. Spiess & Florian, 1989; Nguyen & Pallottino,
1988). Among the factors that influence route choice probability,
the type of headway distributions affects the computation of
expected waiting time the most. Conventionally, headway is
assumed as exponentially distributed. Consequently, the expected
waiting time can be computed in closed form, which greatly
improves the computational efficiency in optimal hyperpath
search. However, pure random arrival of transit vehicles implies
that the expected waiting time for any given line equals its average
headway regardless of passengers’ arrival time, which seems
overly conservative except for bus services with very small head-
way (O’Flaherty & Mangan, 1970).

Other types of headway distributions have been considered by
several authors. Marguier and Ceder (1984) analyze the waiting
time and route choice probabilities in a two-line example, assum-
ing the headways follow either power or Gamma distribution.
Hickman and Wilson (1995) model bus headway using lognormal
distributions in a simulation study. Gendreau (1984) propose to
approximate the line headway distributions by Erlang distribution,
which is a special case of Gamma distribution but has better
analytical tractability. Erlang distributions are also adopted in
Bouzaïene-Ayari, Gendreau, and Nguyen (2001) and Gentile,
Nguyen, and Pallottino (2005) to model route choice in the com-
mon-lines problem. More recently, Ruan and Lin (2009) fit a sam-
ple of observed headway data collected in Chicago to four different
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