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a b s t r a c t

We study appointment scheduling problems in continuous time. A finite number of clients are scheduled
such that a function of the waiting time of clients, the idle time of the server, and the lateness of the sche-
dule is minimized. The optimal schedule is notoriously hard to derive within reasonable computation
times. Therefore, we develop the lag order approximation method, that sets the client’s optimal appoint-
ment time based on only a part of his predecessors. We show that a lag order of two, i.e., taking two pre-
decessors into account, results in nearly optimal schedules within reasonable computation times. We
illustrate our approximation method with an appointment scheduling problem in a CT-scan area.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study appointment scheduling problems in
continuous time. In our setting, we refer to appointment schedul-
ing as the phenomenon in which a service provider is able to sche-
dule arriving clients with the help of an appointment schedule; that
is, a series of appointment times. The appointment time then offers
the client a point in time upon which he or she should actually
arrive to receive service.

It may be convenient to present this phenomenon as an
appointment scheduling problem in two stages: in the first stage
the provider schedules the appointments and in the second stage
the server executes the service. In practice, one can imagine that
the clients (or jobs) present themselves in random order at the first
stage, and request the service provider to schedule them for a ser-
vice. This paper discusses the decision making process of a service
provider, in the first stage, on how to choose the appointment
times of N clients that are to be scheduled to the server in the sec-
ond stage. We develop a new approximation method that is gen-
eric in terms of the client’s service-time distribution, numerically
tractable for large problem instances while offering good
performance.

Applications of an appointment scheme to schedule clients can
be found in manufacturing (e.g., Wang, 1993), services (e.g.,
Kemper, Klaassen, & Mandjes, 2014), and health care (e.g., Cayirli
& Veral, 2003). The basic setting in our paper, as described in the
above, belongs to the so-called – static – class of appointment
scheduling approaches, in which a finite number of appointments
are scheduled prior to the beginning of the actual service, see
Cayirli and Veral (2003). The origin of such an approach dates back
to the work of Bailey (1952) and Welch and Bailey (1952), and gen-
erated substantial interest over the last decades.

Suppose in the first stage, the service provider is given N clients
with random service times that are to be scheduled on a certain
working day. Furthermore, suppose that the service-time distribu-
tion and clients’ loss function due to waiting time, as well as the
server’s loss function, in terms of idle time and possible lateness
after the final client (overtime), are known. The goal is then to min-
imize a convex combination of, possibly weighted, sum of the ser-
ver’s idle time and lateness (overtime), and the client’s waiting
time. Exact calculations of the optimal appointment times is prob-
lematic when there are many clients, since it requires the evalua-
tion of high-dimensional integrals (Denton & Gupta, 2003).

Most of the contributions on appointment scheduling are based
on exponential service times, such as in Wang (1999), Kaandorp
and Koole (2007), Hassin and Mendel (2008) and Turkcan, Zeng,
Muthuraman, and Lawley (2011); or a phase-type distribution for
the service times, such as in Wang (1997), Vanden Bosch, Dietz,
and Simeoni (1999) and Kuiper, Kemper, and Mandjes (2014). Also,
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it is common to assume independent and identically distributed
random variables for the service times. It is reasonable to assume
that the service-time distribution of the clients are independent,
since clients call in at random for an appointment in the first stage.
However, in practice the service times often do not follow an expo-
nential distribution, let alone the service-time distributions of the
arriving clients are identical (although Wang (1999) allows for ser-
vice-time distributions with different service rates).

Simulation approaches are used to evaluate the performance of
heuristics; see, for example, Ho and Lau (1992), Robinson and Chen
(2003), and references mentioned in the overview of Günal and
Pidd (2010). We note, however, that the evaluation of heuristics
with the help of simulation studies can be a time consuming effort
or is often limited to specific service settings, including service-
time distributions and cost ratios (Yang, Lau, & Quek, 1998). To
the best of our knowledge, the number of studies that use simula-
tion in order to trace an optimal schedule are modest, but for an
example see Zhu, Heng, and Teow (2012).

An alternative approach to deal with the high-dimensional opti-
mization problem is to impose restrictions, such as equally-spaced
interappointment times, see for example Hassin and Mendel
(2008). Note that, however, in case of nonidentical service-time
distribution it is argued that one should assign different interap-
pointment times to different clients (Wang, 1999).

We also mention the sequential approach of Kemper et al.
(2014), that enables the service provider to sequentially optimize
the client’s appointment time. The sequential approach clearly
reduces the dimensions of the optimization problem. It is shown
to be generic and flexible (i.e., nonidentical among clients) in terms
of service-time distributions and loss functions, and may include
real-life phenomena such as no-shows and walk-in clients. How-
ever, the computation gets involved for larger schedules in case
of service-time distributions other than the exponential.

One may deal with different service-time distributions, and
trace, in addition, an optimal sequence in case of a small schedule;
see Weiss (1990) and Wang (1999), or slightly larger schedules (up
to 16 clients) with a generalized lambda distribution, see Robinson
and Chen (2003). In practice, however, one often encounters larger
schemes, such as a car glass repair service or a dentist practice,
which schedule up to 30 appointments per day.

Given the importance and relevance of the problem, and the
fact that there is, to the best of our knowledge, no clean solution
available, we decided to explore an alternative approach. Our
approach is able to deal with general service-time distributions,
such as the lognormal (Klassen & Rohleder, 1996) or the Weibull
(Babes & Sarma, 1991) as often seen in practice, and larger sched-
ules. In our approach the optimal appointment times depend only
on a limited number of clients, that arrived previously to the cli-
ent’s appointment, leading to an optimization problem with
reduced dimensionality. For example, we optimize a client’s
appointment time by minimizing his expected waiting times, cor-
responding idle times, and lateness of the server, while taking
into account the effects of just two preceding clients. We refer
to this method as the lag order approximation method in which
the lag order refers to the number of predecessors taken into
account.

The organization of the paper is as follows. In Section 2 we
mathematically formulate the problem. The lag order approxi-
mation method is then presented in Section 3. The performance
of the lag order approximation method is evaluated in Section 4
by studying some numerical examples and a real-life example
from a radiology department. The results show that our method
needs significantly less computational effort, and is able to
derive appointment schedules that are close to optimal. Finally,
we conclude and discuss directions for further research in
Section 5.

2. Problem statement

Consider a service system at which N clients arrive at specified
moments in time, i.e., client n arrives at time tn with tn 2 Rþ for
n ¼ 1; . . . ;N. Each client has a service-time requirement, which is
denoted by the random variable Bn for client n. The service system
has a single server and if upon arrival client n finds the server idle,
he immediately starts his service. If the server is busy, then client n
awaits his turn until all clients that are scheduled before client n
have finished their service. We assume that both the clients and
the server are punctual, and we do not allow for no-shows and
walk-in clients. For studies that do include these phenomena,
although in a different setting, we refer to Kemper et al. (2014)
and references therein.

The vector ðt1; . . . ; tNÞ is called an appointment schedule for this
service system. For a given schedule, we denote by In the time that
the server has been idle upon start of the service of client n. We
denote by Wn the waiting time of client n. Note that, the sojourn
time Sn of client n can then be defined by Sn ¼Wn þ Bn. In most set-
tings the planning horizon (that is, the time span, T, in which cli-
ents can be scheduled) is finite. However, it can happen that
after the planning horizon there are still clients that need to be
served. We therefore define the lateness L as the overtime that
the server has to make in order to finish all services. It is useful
to define the interappointment times by

xn ¼ tnþ1 � tn; n ¼ 1; . . . ;N � 1:

The idleness In can then be written as

In ¼ maxfxn�1 � Sn�1;0g; n ¼ 2; . . . ;N: ð1Þ

The waiting time Wn is given by

Wn ¼maxfSn�1 � xn�1;0g; n ¼ 2; . . . ;N: ð2Þ

From (1) and (2) follow Wn þ In ¼ jSn�1 � xn�1j for n > 1. The late-
ness can be expressed as

L ¼maxftN þ SN � T;0g: ð3Þ

Clearly, it is reasonable to assume that t1 ¼ 0, so that both W1 ¼ 0
and I1 ¼ 0. If t1 > 0 then W1 ¼ 0 as the first client still arrives on
an empty system, but I1 > 0 because the service provider has to
wait t1 amount of time. Moreover, it holds that Wn � In ¼ 0,
n ¼ 1; . . . ;N.

The objective of the appointment scheduling problem is to find
a schedule ðt2; . . . ; tNÞ, or equivalently ðx1; . . . ; xN�1Þ, such that a loss
function LF, which depends on In, Wn, and L, is minimized.
Throughout the paper, we assume that LF has the form

LFðx1; . . . ; xN�1Þ ¼
XN

n¼2

Ef ðInÞ þ EgðWnÞ½ � þ EhðLÞ; ð4Þ

with f ð�Þ; gð�Þ, and hð�Þ nondecreasing continuous functions.

3. The lag order approximation method

In this section we reveal the lag order approximation method in
its general form. Basically, the optimal schedule is found through
the optimization of (4), that is

min
x1 ;...;xN�1

LFðx1; . . . ; xN�1Þ ð5Þ

The waiting time of client n is a random variable depending on
x1; . . . ; xn�1, i.e., all the predecessors of client n are incorporated,
Wn ¼Wnðx1; . . . ; xn�1Þ. The main idea of the lag order approximation
method is to neglect part of the predecessors that influence the
waiting time (and idle time and lateness) of the loss function in
(4), and express the waiting time for each client n in terms of its
K predecessors, where K is the number of lags taken into the
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