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a b s t r a c t

It has been reported that since year 2000, there have been an average 700 water main breaks per day only
in Canada and the USA costing more than CAD 10 billions/year. Moreover, water main leaks affect other
neighboring infrastructure that may lead to catastrophic failures. For this, municipality authorities or
stakeholders are more concerned about preventive actions rather reacting to failure events. This paper
presents a Bayesian Belief Network (BBN) model to evaluate the risk of failure of metallic water mains
using structural integrity, hydraulic capacity, water quality, and consequence factors. BBN is a probabi-
listic graphical model that represents a set of variables and their probabilistic relationships, which also
captures historical information about these dependencies. The proposed model is capable of ranking
water mains within distribution network that can identify vulnerable and sensitive pipes to justify proper
decision action for maintenance/rehabilitation/replacement (M/R/R). To demonstrate the application of
proposed model, water distribution network of City of Kelowna has been studied. Result indicates that
almost 9% of the total 259 metallic pipes are at high risk in both summer and winter.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Water distribution networks (WDNs) are among the most
important and expensive municipal infrastructure assets (Berardi,
Giustolisi, Kapelan, & Savic, 2008), and vital to public health.
Potable water and wastewater conveyance system are spatially
distributed assets and 1.6 million miles of pipelines lay beneath
North America’s roads (Agarwal, 2010). American Society of Civil
Engineers (ASCE) (2013) Report Card for America’s Infrastructure
gave a grade of ‘‘D’’ to water/wastewater infrastructure. Canada’s
first national infrastructure Report Card (2012) indicated that a sig-
nificant amount of drinking-water, stormwater and wastewater
infrastructure are in ‘‘fair’’ to ‘‘very poor’’ condition. The replace-
ment costs of these assets are $25.9, $15.8 and $39 billions, respec-
tively. According to the Infrastructure Report (2007), there have
been more than 2 million breaks in Canada and the United States
since January 2000, with an average of 700 water main breaks
every day, costing more than CAD 10 billions/year. Moreover,
water main leaks affect other existing nearby infrastructures such
as sewer, storm water, pavement, and gas pipes that may lead to
catastrophic failures (US EPA, 2011). The water main failure risk

mitigation has transformed reactive to preventive actions of water
main maintenance. Thus, risk-based decision making is taking
prominence (e.g., Anwar, Koester, & Harlow, 2005; Bennett,
Bohoris, Aspinwall, & Hall, 1996; He & Huang, 2008; Kleiner,
Rajani, & Sadiq, 2005; Marlow, Beale, & Mashford, 2012; Matos,
2007; Sadiq & Rodriguez, 2004; Sorge, Christen, & Malzer, 2013;
Tesfamariam, Sadiq, & Najjaran, 2010; US EPA, 1995).

Failure risk is combination of probability and impact severity of
a particular situation that negatively affects the ability of infra-
structures to obtain municipal objectives (InfraGuide, 2006), which
is in congruence with Lawrence’s (1976) risk definition. A success-
ful risk assessment program provides predictive tools to evaluate
water mains failure, assess the consequences associated with such
failures, and recommend prioritization strategies for capital and
operating spending (Moustafa, 2010). As well, this tool enables
municipalities and other authorities to build long- and short-term
management plans. It is important to determine the cause and
effect of probability of failure, where failure can manifests as struc-
tural integrity, hydraulic capacity and water quality (Al-Barqawi &
Zayed, 2008; Christodoulou, Deligianni, Aslani, & Agathokleous,
2009; Fares & Zayed, 2010; Sadiq, Kleiner, & Rajani, 2010) and con-
sequences (e.g. Fares & Zayed, 2010; Francisque, Rodriguez, Sadiq,
Miranda, & Proulx, 2009). These strategies should be built on scien-
tific approaches that combine human knowledge and experience as
well as expert judgment to consider the risk of water main failure.
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Despite some differences, the performance objectives for risk of
failure of water mains can broadly be categorized as: water quality
index (WQI), hydraulic capacity index (HCI), structural integrity
index (SII) and consequences index (CI) (Al-Barqawi & Zayed,
2008; Infrastructure Report, 2007). Christodoulou et al. (2009)
included eight significant factors like number of observed previous
breaks, diameter, length, material, traffic load, proximity to high-
way, proximity to subway, and proximity to roadway/block inter-
section in the study. Al-Barqawi and Zayed (2008) classified factors
contributing to water main deterioration into physical, environ-
mental and operational factors. Fares and Zayed (2010) categorized
the model structure into four main factors and sixteen factors
which represents the deterioration and post-failure factors. A sum-
mary of contributing risk factors of water main failure reported in
different studies is presented in Table 1.

Different water main failure models have been reported to
quantify risk factors of water main failure and infrastructure dete-
rioration. When significant historical data exist, model-free meth-
ods, such as Artificial Neural Networks (ANN), can provide insights
into cause-effect relationships and uncertainties through learning
from data (e.g. Christodoulou, Aslani, & Vanrenterghem, 2003;
Ismail, Sadiq, Soleymani, & Tesfamariam, 2011 and Najafi &
Kulandaivel, 2005). But, if historical data are scarce and/or avail-
able information is ambiguous and imprecise, other soft computing
techniques can provide appropriate framework to handle such
relationships and uncertainties (e.g., Bolar, Sadiq, & Tesfamariam,
2013; Cockburn & Tesfamariam, 2012; Deng, Sadiq, Jiang, &
Tesfamariam, 2011; Flintsch & Chen, 2004; Ismail et al., 2011;
Janssens et al., 2006; Lauría & Duchessi, 2007; Najjaran, Sadiq, &
Rajani, 2005; Poropudas & Virtanen, 2011; Sadiq & Rodriguez,
2004; Sun & Shenoy, 2007; Tesfamariam & Najjaran, 2007). Table 2
provides a qualitative comparison between six networks based
computing techniques including ANN, Analytic Network Process
(ANP), Bayesian Belief Network (BBN), Cognitive Maps/Fuzzy Cog-
nitive Maps (CM/FCM), Credal Network (CN) and Fuzzy Rule-Based
Models (FRBM). Central to this comparison is an assessment of
how each technique treats inherent uncertainties and its ability
to handle interacting factors that encompass issues specific to fail-
ure of water mains.

The ANN has been used by Christodoulou et al. (2003) and
Najafi and Kulandaivel (2005) to analyze the failure risk of water
main and sewer in an urban area with historical breakage data,
respectively. Christodoulou et al. (2003) indicated that the number
of previous breakage, diameter, material, and length of pipe seg-
ments were the most important factors for water main failure.
Modeling of breaks in the water networks was carried out using
multiple regression and ANN by Jafar et al. (2003). Al-Barqawi
and Zayed (2006a, 2008)developed rehabilitation priority for water
mains using ANN approach. Their results showed that the breakage
rate has the highest relative contribution factor followed by age.
Amaitik and Amaitik (2008) developed pre-stressed concrete cylin-
der pipe wire breaks prediction model using ANN. Failure rate and
the optimal replacement time for the individual pipes of urban
water distribution system were estimated using ANN by Jafar,
Shahrour, and Juran (2010).

Kleiner, Sadiq, and Rajani (2004) used a fuzzy rule-based non-
homogeneous Markov process to model the deterioration proce-
dure of buried pipelines. The deterioration rate at a specific
time is estimated based on the asset’s age and condition state
using a fuzzy rule-based algorithm. Fuzzy sets and fuzzy-based
techniques were proposed to evaluate pipeline failure risk by
Kleiner, Rajani, and Sadiq (2006). For prioritizing monitoring loca-
tions (zones) in a WDN, Francisque et al. (2009) coupled the con-
cept of risk with fuzzy synthetic evaluation and fuzzy rule-base.
To evaluate the risk of water main failure considering both conse-
quence and deterioration factors and to develop a risk scale of

failure, Fares and Zayed (2010) used hierarchical fuzzy expert sys-
tem framework. Christodoulou et al. (2009) proposed neurofuzzy
systems to assess the risk of failure in a network. Tesfamariam,
Rajani, and Sadiq (2006) have proposed a possibilistic based pipe
failure risk using Rajani and Tesfamariam (2004) mechanistic
models. Rajani and Tesfamariam (2007) have extended these
models with fuzzy deterioration model to estimate remaining
service lives.

Joseph, Adams, and McCabe (2010) proposed BBN to support
the water quality compliance of small or rural water distribution
systems. Expert judgment was used to quantify the required prob-
ability relationships. However, it is usually difficult to establish
mutual relationships among nodes in the network solely based
on the knowledge of experts, particularly for complex problems
(Nadkarni & Shenoy, 2001). If a node in a BBN has several parent
nodes or each parent node and child node has several states, the
number of conditional probabilities will be increases exponentially
(Tang & McCabe, 2007). For example, if a child node has three par-
ent nodes and the number of their states is five, the total number of
conditional probability table (CPT) values can be a great as 54 (625)
(Lauría & Duchessi, 2007). The elicited conditional probabilities
defined by experts can be inconsistent, especially under the com-
plex and large CPT condition. Joseph et al. (2010) limited the max-
imum number of parent nodes for any variable into three. However
it is not possible to always represent the causal effect properly
with only three variables. In that situation, it is more reliable and
consistent to construct CPTs training from data (Cooper &
Herskovits, 1992; Hager & Andersen, 2010; Tang & McCabe,
2007). To find out the posterior probabilities of water main failure
starting from the prior probabilities of failure based on the age at
failure, pipe diameter, cause of break and type of soil for specific
type of pipe using Bayes’ theorem proposed by Singh (2011). But
the author assumed these contributing risk factors independent
and the causal dependencies among the variables have not been
taken into consideration. Furthermore the author did not mention
what will be the failure probabilities if all these risk factors affects
simultaneously and how to update posterior probabilities when
new failure information available.

Objective of this research is to develop a new and effective
model to evaluate the risk of water main failure considering
structural integrity, hydraulic capacity, water quality, and conse-
quence factors. This paper explores both knowledge and data
based BBN model to evaluate water main failure risk index that
can be used to rank or prioritize the water main in a network sys-
tem for M/R/R. In this research, deterioration factors that lead to
the failure event and the consequence factors that result from the
failure event (failure impact) are studied. Such decision support
systems will aid the utility manager to better address the struc-
tural and hydraulic failure of water mains, proactively, while
meeting financial constraints, level of service, and regulatory
requirements.

2. Bayesian Belief Network (BBN)

2.1. Background

Bayesian belief network is a graphical model that permits a
probabilistic relationship among a set of variables (Pearl, 1988).
A BBN is a Directed Acyclic Graph, where the nodes represent vari-
ables of interest and the links between them indicate informational
or causal dependencies among the variables (Cockburn &
Tesfamariam, 2012; Hager & Andersen, 2010; Laskey, 1995). As
depicted in Fig. 1, a BBN is composed of:

(a) a set of variables (e.g. A1, A2 and B) and a set of directed links
between the variables;

G. Kabir et al. / European Journal of Operational Research 240 (2015) 220–234 221



Download English Version:

https://daneshyari.com/en/article/6897190

Download Persian Version:

https://daneshyari.com/article/6897190

Daneshyari.com

https://daneshyari.com/en/article/6897190
https://daneshyari.com/article/6897190
https://daneshyari.com

