
Discrete Optimization

An application of the branch, bound, and remember algorithm to a new
simple assembly line balancing dataset

David R. Morrison a,⇑, Edward C. Sewell b, Sheldon H. Jacobson a

a University of Illinois, Urbana-Champaign, Dept. of Computer Science, 201 N. Goodwin Ave., Urbana, IL 61801, United States
b Southern Illinois University Edwardsville, Dept. of Mathematics and Statistics, Edwardsville, IL 62026, United States

a r t i c l e i n f o

Article history:
Received 15 November 2012
Accepted 24 November 2013
Available online 4 December 2013

Keywords:
Assembly line balancing
Branch and bound
Combinatorial optimization

a b s t r a c t

The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem for which a
new problem database of generated instances was published in 2013. This paper describes the applica-
tion of a branch, bound, and remember (BB&R) algorithm using the cyclic best-first search strategy to this
new database to produce provably exact solutions for 86% of the unsolved problems in this database. A
new backtracking rule to save memory is employed to allow the BB&R algorithm to solve many of the
largest problems in the database.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The assembly line balancing problem is a well-studied problem
with many applications, including the automotive industry, con-
sumer electronics, and household items (Baybars, 1986; Sarker &
Pan, 2001). This problem has many variants with different objec-
tives and side constraints; see Battaïa and Dolgui (2013) for a re-
cent survey of problem formulations and solution techniques.
One of the most basic assembly line balancing problems is the Sim-
ple Assembly Line Balancing Problem (SALBP). In this problem, a
set of tasks T ¼ f1;2; . . . ;ng is given that must be accomplished
by a set of workers or stations. In many applications, stations are
designed to complete specific tasks; however, the SALBP relaxes
this assumption so that all stations are considered identical. Each
task requires a certain amount of time tj (called the processing
time) to complete, and each station has a specified fixed amount
of time c (called the cycle time) that it can spend completing tasks.

Additionally, a directed acyclic graph G, called the precedence
graph, is given with vertex set T and arc set A. An arc ði; jÞ 2 A indi-
cates that task i must be completed before task j. A task i is a pre-
decessor (alternately, successor) of j if there is a path from i to j
(alternately, from j to i) in G; if this path has length 1, i is a direct
predecessor or successor. The set of direct predecessors (succes-
sors) of j is denoted PjðFjÞ, and the set of predecessors (successors)
of j is P�j F�j

� �
.

The objective of SALBP is to find the minimum number of sta-
tions needed to complete all tasks, subject to the cycle time at each
station, that satisfies all relations given in the precedence graph.
Given a set of tasks Sm assigned to the mth station, define the idle

time Im as the amount of time the station is not working; that is,
Im ¼ c �

P
j2Sm

tj. For a complete assignment of tasks to stations,
the total idle time I is the sum of the idle times at each station.

Despite the fact that SALBP is NP-complete (the bin-packing
problem is a special case where G has no edges), a number of
well-known exact algorithms exist for solving SALBP. An early
algorithm developed called EUREKA (Hoffmann, 1992) used an
effective heuristic together with a branch-and-bound algorithm
that explored in both the forward and reverse directions (i.e., by
assigning tasks to either the first stations first or the last stations
first). Extensions to the Hoffman heuristic were proposed in Fleszar
and Hindi (2003) that were able to perform quite well on a subset
of standard benchmark problems.

Johnson (1988) describes an algorithm called FABLE which
incorporates a number of bounding rules and dominance rules
for the SALBP problem; additionally, Nourie and Venta (1991) give
an algorithm called OptPack which uses a dominance rule called
the tree dominance rule. Another branch-and-bound algorithm,
called SALOME (Scholl & Klein, 1997, 1999), also incorporated a
bi-directional search strategy together with several highly effective
lower bounds, dominance rules, and a new branching strategy. An-
other lower bound, based on an LP relaxation of SALBP, is described
in Peeters and Degraeve (2006). A dynamic-programming heuristic
for SALBP is given in Bautista and Pereira (2009) that incorporates
bounding mechanisms into the DP table. Finally, Scholl and Becker
(2006) provide a comprehensive survey of SALBP, discussing vari-
ous bounds and solution methods (both exact and heuristic).

More recently, Sewell and Jacobson (2012) give a highly-effec-
tive algorithm for SALBP that is able to solve all 269 test instances
in a list of benchmark instances, including one instance that had
previously been open for over a decade. This algorithm incorpo-
rates a three-phase solution procedure together with the cyclic

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.11.033

⇑ Corresponding author. Tel.: +1 217 244 7275; fax: +1 217 244 6869.
E-mail address: drmorr0@gmail.com (D.R. Morrison).

European Journal of Operational Research 236 (2014) 403–409

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.11.033&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.11.033
mailto:drmorr0@gmail.com
http://dx.doi.org/10.1016/j.ejor.2013.11.033
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

best-first search (CBFS) strategy, as well as a number of good lower
bounds and a memory-based dominance rule. A new set of bench-
mark instances, as well as an instance generator called SALBPGen,
was subsequently released by Otto, Otto, and Scholl (2013); this
dataset contains 6825 problem instances, ranging in size from
small (20 tasks) to very large (1000 tasks), and incorporates a num-
ber of features commonly seen in real-world data.

This paper extends the algorithm of Sewell and Jacobson (2012)
with a new backtracking procedure for very large problem in-
stances, and presents computational results on the new dataset
of Otto et al. (2013). In this new dataset, 1359 instances are listed
as unsolved; the most significant contribution of this paper is to
demonstrate that 1172 instances (i.e., all but 187 instances) can
each be solved in under 1 hour of computation time, and a further
184 have the best-known solution improved upon. Moreover, all of
the previously-solved instances in this database are also solved by
this algorithm. Additionally, a proof of compatibility between the
dominance rules used in this algorithm is provided. Finally, a brief
study of the remaining unsolved instances is also performed to
determine what characteristics make them challenging for the
Sewell and Jacobson (2012) algorithm.

This paper is organized as follows: Section 2 provides a descrip-
tion of the new SALBP problem database. Section 3 describes the
branch, bound, and remember algorithm used to solve these prob-
lems, and Section 4 presents the suite of computational results per-
formed against the instances in the database. Finally, Section 5
gives some concluding remarks.

2. Problem testbed description

The SALBPGen algorithm of Otto et al. (2013) was designed to
emulate properties seen in real-world assembly lines, particularly
from the automotive industry. In particular, two graph properties
were identified that commonly appear in the precedence graph G
for these problems; these are bottleneck tasks and chains. A third
property is that of modular design, which is an optional additional
generation parameter that groups nodes into related clusters or mod-
ules, and builds a super-precedence graph on the modules. However,
the modular design option is not used in the benchmark dataset.

A bottleneck task j has high in- and out-degree in G; furthermore,
it is the only direct successor for at least two tasks in Pj, and it is the
only direct predecessor for at least two tasks in Fj. A chain of tasks, on
the other hand, is a set of tasks C # T with jCjP 2 such that C forms a
path in G and jPjj ¼ jFjj ¼ 1 for each j 2 C.

Another important property of SALBP instances is the order
strength; this value, denoted by OS, is computed as jAðGþÞj=

n
2

� �
, where AðGþÞ is the arc set of Gþ, the transitive closure of

G. That is, Gþ is the graph with vertex set T where arc ði; jÞ indicates
that task i is a (not necessarily direct) predecessor of task j. As sta-
ted in Scholl and Klein (1999), ‘‘Small values of OS indicate that the
precedence constraints are not very restrictive such that many se-
quences of tasks are feasible.’’ There are some indications that mid-
dle values of OS are harder than low or high order strength values.
The generator SALBPGen allows an input parameter to be given
specifying the desired order strength of the graph.

A third important parameter that can be controlled by SALBP-

Gen is the distribution of task times; for each instance, task times
are randomly generated according to some pre-specified probabil-
ity distribution. The problem database contains instances with task
times that have been generated according to three different distri-
butions, described below:

� Short task time distribution-task times are drawn from a nor-
mal distribution with the mean centered around small times.

� Bimodal task time distribution-task times are drawn from a
combination of two normal distributions with means centered
around small and large times.
� Centralized task time distribution-task times are drawn from a

normal distribution with a mean task time of c=2.

The first two task time distributions emulate properties seen in
real-world instances of the assembly line balancing problem; the
latter is designed to produce challenging instances.

The problem database used for testing in this paper was gener-
ated and described in Otto et al. (2013). The database contains in-
stances with n ¼ 20; 50; 100, and 1000 tasks (called small,
medium, large, and very large, respectively). There are 525 in-
stances of each problem size, which have been generated with
varying order strengths and distribution of task times. A third of
the problems (called BN instances) have been generated with bot-
tleneck nodes having minimum degree eight (or minimum degree
four in the small instances). A third (called CH instances) have been
generated with 40% of the nodes in chains, and a third of the in-
stances (called MIX instances) have no such requirements on the
structure of the precedence graph.

For each problem instance in the medium dataset, there are 9
additional permuted instances, which share a common precedence
graph and set of task times, but have randomly assigned the task
times to tasks. Thus, there are a total of 6825 instances in the dataset.
Of these instances, Otto et al. (2013) report that 4 small instances,
846 medium instances (including permutations), 170 large in-
stances, and 339 very large instances have not yet been solved, for
a total of 1359 unsolved instances. No other papers were found in
the literature that have improved upon these results thus far.

3. The BB&R algorithm for SALBP

Algorithm 1. BBRðt;G; cÞ
1 ComputeDirectionðt;GÞ
2 UB ¼ ModifiedffmannHeuristicðt;G; cÞ
3 LBroot ¼maxðLB1; LB2; LB3;BPLBÞ hhGlobal lower bound is

best lower bound at the rootii
4 UB ¼ RunSearchðUB; LBroot;CBFSÞ
5 if s < slim and previous search was not (provably) optimal:
6 UB ¼ RunSearchðUB; LBroot;BrFSÞ

Algorithm 2. RunSearchðUB; LBroot;modeÞ.
1 c ¼ 0
2 root ¼ ð;; TÞ hhThe root node has no assigned tasks to any

stationii
3 X ¼ root
4 While search tree is non-empty, c < nlim; s < slim, and

LBroot < UB:
5 if maxðLB1X ; LB2X ; LB3X ;BPLBXÞ 6 UB or X is dominated:

rune X
6 else if X dominates another subproblem Y: delete Y
7 else if X is terminal UB ¼minðm;UBÞ
8 else:
9 for each valid Smþ1, given AX:

10 Y ¼ AX [Smþ1;UX n Smþ1; S
X
1 ; S

X
2 ; . . . ; SX

m; Smþ1

� �
11 Insert Y into search tree and increment c
12 hhIf too many subproblems are generated at a node,

the search continues in a heuristic mannerii
13 if more than slim subproblems have been generated

from X:
14 stop generating subproblems
15 Select a new X according to the mode (CBFS or BrFS)
16 return UB

404 D.R. Morrison et al. / European Journal of Operational Research 236 (2014) 403–409

Download English Version:

https://daneshyari.com/en/article/6897402

Download Persian Version:

https://daneshyari.com/article/6897402

Daneshyari.com

https://daneshyari.com/en/article/6897402
https://daneshyari.com/article/6897402
https://daneshyari.com

