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a b s t r a c t

To analyze the input/output behavior of simulation models with multiple responses, we may apply either
univariate or multivariate Kriging (Gaussian process) metamodels. In multivariate Kriging we face a
major problem: the covariance matrix of all responses should remain positive-definite; we therefore
use the recently proposed ‘‘nonseparable dependence’’ model. To evaluate the performance of univariate
and multivariate Kriging, we perform several Monte Carlo experiments that simulate Gaussian processes.
These Monte Carlo results suggest that the simpler univariate Kriging gives smaller mean square error.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In operations research (OR) practice, simulation is often applied.
Simulation may be either deterministic or random (stochastic).
Applications of deterministic simulation abound in engineering
such as computer aided engineering (CAE), but there are also appli-
cations in OR as demonstrated by the following two examples.
Example 1 concerns the management of fisheries at the French Re-
search Institute for Exploitation of the Sea (IFREMER); see Mahevas
and Pelletier (2004). Example 2 is the case study on the CO2 green-
house effect by Kleijnen, Van Ham, and Rotmans (1992). Applica-
tions of random simulation are plentiful in OR, especially in
queueing and inventory management; see the references in Kleij-
nen (2008, pp. 3–6).

Kriging model may be used to analyze the input/output (I/O)
behavior of a given simulation model; this analysis may serve val-
idation, sensitivity analysis, and optimization, as discussed by
Kleijnen (2008). This Kriging gives a metamodel; i.e., it approxi-
mates the I/O function defined by the underlying simulation mod-
el. There are different types of metamodels; most popular is a
polynomial of either first or second order; see Kleijnen (2008).
We, however, focus on Kriging, which has already become popular
in engineering and is gaining popularity in OR; see the many refer-
ences in Chen, Ankenman, and Nelson (2012) and Kleijnen (2008).
Most of this Kriging literature, however, ignores multivariate
Kriging; also see our literature summary below.

In practice, a given simulation model has multiple outputs—also
called responses or performance criteria. For example, Kleijnen
(1993) discusses a case study on the production planning of steel
tubes of different types, using a simulation model with 28 outputs
which—after a discussion with management—were reduced to two
outputs. Kleijnen and Smits (2003) discusses multiple performance
metrics in supply chain management. The literature on metamod-
els, however, often reduces these multiple outputs to a single out-
put—either ignoring all the other outputs or combining all outputs
through a weighting function; in our Monte Carlo experiments (de-
tailed In Section 4) we shall briefly discuss results for the sum and
the product of two outputs. Other publications present metamod-
els per individual output ignoring the correlations between out-
puts; e.g., Kleijnen, Van Beers, and Van Nieuwenhuyse (2010) fit
univariate Kriging models for each of the two outputs—namely,
cost and service—of a call-center simulation. In all our Monte Carlo
experiments we also apply such univariate Kriging—besides multi-
variate Kriging.

Intuitively, it may seem that multivariate Kriging gives a lower
mean squared error (MSE) than univariate Kriging, because the for-
mer accounts for the cross-correlations between different output
types, whereas the latter accounts only for the auto-correlations
between outputs of the same type for different input combina-
tions—as we shall explain in Sections 2 and 3. However we think
this intuition may be misleading. In practice the Kriging parame-
ters are unknown so they must be estimated, which increases
the MSE; multivariate Kriging requires the estimation of additional
parameters—namely, the cross-correlations—which further in-
creases the MSE. Note that Hernandez and Grover (2013) also
use the MSE criterion in their article on Kriging.
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To empirically compare univariate and multivariate Kriging, we
use Monte Carlo experiments that guarantee the validity of the Kri-
ging metamodel. The literature usually experiments with realistic
simulation models, but these experiments imply approximation
errors (bias) of the Kriging metamodels. Moreover, these simula-
tion models may be computationally expensive. We limit our
investigation to Kriging in deterministic simulation, which is also
the basis for Kriging in stochastic simulation.

Furthermore, we limit our first Monte Carlo experiments to sit-
uations with a single input and two outputs. Many OR problems do
have a single input; examples are queueing simulation models
with the traffic rate as the single input and inventory models such
as the newsvendor problem with the order quantity as the single
input. Moreover, Kriging in simulation usually assumes that in case
of multiple inputs the correlation function is the product of the
correlation functions per individual input; see Eq. (2). In this exam-
ple we limit the number of multiple outputs to two; in case of
more outputs, the cross-correlations are correlations between all
pairs of outputs. We do vary the magnitudes of the cross-correla-
tion between the two outputs. In the second example we base
our Monte Carlo experiment on a climate simulation with five in-
puts and three outputs.

To provide some background for our study, we summarize the
rather limited number of publications that explicitly discuss multi-
ple outputs. This literature assumes different types of multivariate
models; we distinguish the following three types:

1. In practice, simulation models may have (say) n types of output;
each type is a specific transformation of the same input combi-
nation and the same pseudorandom number stream; in deter-
ministic simulation, this stream vanishes. Software (such as
Arena) for building and running discrete-event simulation mod-
els permits the automatic collection of multiple outputs. Not
only simulation may give multiple outputs; real-life systems
may too. This type is the focus of our study.

2. A given real system may be represented by n different simula-
tion models with different degrees of realism (detail); so-called
multi-fidelity simulation. We claim that this situation is extre-
mely rare in OR. The simulation model with few details is run
for many input combinations, whereas the detailed type is
run for fewer combinations. Obviously, the most detailed simu-
lation is the real system itself. See Santner, Williams, and Notz
(2003), Forrester, Sobester, and Keane (2008), Goh et al. (2013),
Tuo, Wu, and Yu (in press), and also ‘‘partially heterotropic’’ sit-
uations in Wackernagel (2003, p. 158).

3. Besides the output of interest, the modelers collect information
on the gradient of this output. In discrete-event simulation, this
type is rare, because the estimation of this gradient is compli-
cated (it typically uses either ‘‘perturbation analysis’’ or the
‘‘score function’’ method). An example is Chen, Ankenman,
and Nelson (2013). Obviously, the output and its gradient are
estimated for the same input combinations.

For type-1 real-life systems, Cressie (1991, pp. 138–142) speaks
of cokriging in his book on spatial data analysis. Wackernagel
(2003, pp. 143–209) also discusses geostatistics, so he restricts
the input data to one, two, or three dimensions (whereas simula-
tion implies an arbitrary number of dimensions). Gneiting, Kleiber,
and Schlather (2010) also discuss cokriging in geostatistics assum-
ing so-called Matérn correlation functions. Santner et al. (2003, pp.
101–116) do discuss simulation or computer experiments, assume
type-3 simulations. Higdon, Gattiker, Williams, and Rightley
(2008) discuss the combination of real-life ‘‘field data’’ and simula-
tion data, where both types of data concern the same real-life sys-
tem so it concerns type-2 situations; they allow for very many
types of output. Forrester (2010) also discusses type-2 situations;

i.e., the combination of (i) scarce and expensive real-life data with
abundant and inexpensive simulation data, or (ii) scarce and
expensive data from a detailed simulation model with abundant
and inexpensive data from a quick-and-dirty simulation model.
Williams, Santner, Notz, and Lehman (2010) discuss multivariate
Kriging in constrained optimization in simulation with multiple
outputs—but they follow Santner et al. (2003). Altogether we rec-
ommend Santner et al. (2003) and Wackernagel (2003) for an
introduction to multivariate Kriging. Note that Li, Azarm, Far-
hang-Mehr, and Diaz (2006) also recognize that in practice simula-
tion models have multiple outputs and that Kriging is an important
type of metamodel, but those authors use a completely different
approach (they do not use cokriging with estimated cross-
correlations).

Besides the areas of operations research (our focus), geostatis-
tics, and engineering there is another area with major contributions
to Kriging or Gaussian process (GP); namely machine learning; see
Rasmussen and Williams (2005). Multivariate GPs are investigated
in machine learning in multi-task learning, multi-sensor networks
or structured output data. To obtain positive definite (PD) covari-
ance matrixes, this community uses either so-called separable
models or nonseparable models. The nonseparable models are
based on either convolution method or the linear model of coregi-
onalization (LMC). We define these different models in Section 3.
Separable models for multi-task learning are used by Bonilla, Chai,
and Williams (2007). Álvarez, Rosasco, and Lawrence (2011) show
how several models in machine learning are special cases of LMC.
In LMC, they use Cholesky’s decomposition of the cross-covariance
matrix to construct a PD covariance matrix, and they show that the
convolution method gives lower standardized mean square errors
than LMC. Fricker, Oakley, and Urban (2010) present an LMC variant
that uses eigendecomposition of the cross-covariance matrix to
construct a PD covariance matrix. They show that their LMC variant
gives a lower mean squared error than the convolution method. The
convolution method is introduced to this community by Boyle and
Frean (2005). The main disadvantage of this method are the compu-
tational and storage requirements. Álvarez and Lawrence (2011)
propose a more efficient approximation for multivariate GPs con-
structed through the convolution method. This method does not
spend much effort on accurate modeling of cross-covariance. To
improve the accuracy in convolution method, more parameters
are needed; Fricker et al. (2010) propose a new method that intro-
duces such parameters. Note that Constantinescu and Anitescu
(2013) specify the covariance matrixes imposing constraints origi-
nating from the physics laws that determine relationships among
the outputs of their application; in OR, however, such knowledge
is usually not available.

We summarize our article as follows. We consider multivariate
Kriging model constructed through LMC which is proposed by
Fricker et al. (2010). Furthermore, we interpret this novel Kriging
model. We also present Monte Carlo results for the performance
of this multivariate model and univariate Kriging per output. Using
this Monte Carlo laboratory, we confirm previous results showing
that multivariate Kriging does not provide improvements com-
pared with univariate Kriging—even under ideal conditions. Sven-
son and Santner (2010) use Fricker et al. (2010)’s LMC for their
multi-objective optimization problem; unlike we, they do not com-
pare univariate and multivariate Kriging. Fricker et al. (2010) find
that univariate Kriging always gives smaller RMSEs than multivar-
iate Kriging. Fricker et al. (2010) suggest that if the output is a func-
tion of other outputs, then multivariate Kriging outperform
univariate Kriging. We use the data in Fricker et al. (2010) only to
select the parameters in our Monte Carlo experiment with a multi-
variate Kriging metamodel that has no specification errors; i.e.,
their Kriging metamodel is only an approximation of the true I/O
function of their underlying simulation model, whereas multivari-
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