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a b s t r a c t

Given a double round-robin tournament, the traveling umpire problem (TUP) consists of determining
which games will be handled by each one of several umpire crews during the tournament. The objective
is to minimize the total distance traveled by the umpires, while respecting constraints that include vis-
iting every team at home, and not seeing a team or venue too often. We strengthen a known integer pro-
gramming formulation for the TUP and use it to implement a relax-and-fix heuristic that improves the
quality of 24 out of 25 best-known feasible solutions to instances in the TUP benchmark. We also improve
all best-known lower bounds for those instances and, for the first time, provide lower bounds for
instances with more than 16 teams.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The assignment of officials (referees, umpires, judges, etc.) to
the games of a competition is an important and difficult problem
studied in the area of sports scheduling. The specific constraints
and objectives vary according to the sport and type of competition,
of course, but they typically aim to satisfy a given set of fairness
criteria while minimizing costs (e.g. wages or travel). Existing re-
search ranges over many different sports, including baseball
(Evans, Hebert, & Deckro, 1984; Evans, 1988; Trick & Yildiz,
2011; Trick & Yildiz, 2012; Trick, Yildiz, & Yunes, 2012), cricket
(Wright, 1991), football (Yavuz, _Inan, & Fığlalı, 2008), and tennis
(Farmer, Smith, & Miller, 2007). For more comprehensive surveys
of sports-related problems, we refer to Ernst, Jiang, Krishnamoor-
thy, Owens, and Sier (2004) and Kendall, Knust, Ribeiro, and Urru-
tia (2010).

We study the traveling umpire problem (TUP), which was first
proposed by Trick and Yildiz (2007) as an abstract version of the
real-life umpire scheduling problem faced by Major League

Baseball. Despite excluding many details present in the real prob-
lem, the TUP successfully captures the most important features
that make the problem very challenging to solve. This is evidenced
by the fact that many small instances remain unsolved in the offi-
cial TUP benchmark: Trick (2013).

Given a double round-robin tournament with 2n teams (each
team plays against each other team twice, once at home and once
on the road, over exactly 4n� 2 rounds), the distances between the
home venues of each pair of teams, and two integers 0 6 d1 < n
and 0 6 d2 < bn2c, a solution to the TUP is an assignment of n
umpire crews (umpires, for short) that satisfies the following
constraints:

(i) In each round, each umpire is assigned to exactly one game
and each game must be assigned to an umpire;

(ii) Each umpire visits every team at home at least once;
(iii) Each umpire visits any given venue at most once in any

sequence of n� d1 consecutive games;
(iv) Each umpire sees any given team at most once in any

sequence of bn2c � d2 consecutive games.

The objective is to find a feasible solution that minimizes the to-
tal distance traveled by the umpires over the entire tournament.

When d1 ¼ d2 ¼ 0, TUP instances tend to be more difficult to
solve because constraints (iii) and (iv) become stricter. We refer
to these instances as hard instances. To allow for a wider range in
the degree of difficulty, the TUP benchmark also includes instances
with d1 þ d2 > 0, to which we refer as relaxed instances.
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Our main contributions are: (1) we strengthen a known integer
programming formulation for the TUP and use it to implement a
relax-and-fix heuristic that improves the quality of 24 out of 25
best-known feasible solutions to instances in the TUP benchmark;
and (2) using our stronger formulation, we improve all best-known
lower bounds for those instances and, for the first time, provide
lower bounds for instances with more than 16 teams.

Before explaining our approach in detail, we review the existing
exact and heuristic methods for solving the TUP.

2. Previous work

Trick and Yildiz (2007) present exact integer programming (IP)
and constraint programming (CP) models for the TUP and test
them on benchmark instances ranging from 4 to 16 teams, as well
as on a 30-team instance. These same models are also used in Trick
and Yildiz (2011); Trick and Yildiz (2012); and Trick et al. (2012),
but in Trick and Yildiz (2011) and Trick and Yildiz (2012) the per-
formance of the IP model is improved by a better choice of solver
parameters (execution times were limited to three hours). Their
IP model finds optimal solutions to all instances with at most 10
teams. The CP model finds optimal solutions to all instances with
at most 8 teams, and also to one of the four 10-team instances.
In addition, it manages to prove that the 12-team instance is infea-
sible; a conclusion that was not obtained by the IP model within
the allowed computation time. When it comes to hard instances
with 14 teams, both IP and CP find feasible solutions to all four in-
stances, with the CP model beating the IP model in terms of solu-
tion quality in three of the four cases. Neither the IP nor the CP
models managed to find any feasible solutions to hard instances
with more than 14 teams. When run on relaxed instances, the CP
model finds feasible solutions to all eight 14-team and all twelve
16-team instances. The IP model finds feasible solutions to 17 of
these 20 instances (three 16-team instances had no solution after
3 hours), but all 17 solutions are better than their counterpart solu-
tions found by the CP model. Neither method managed to find
provably optimal solutions to any of the relaxed instances with
more than 10 teams.

On the heuristic side, we focus on hard and relaxed instances
with at least 14 teams because none of them have known optimal
solutions (29 instances in total; 25 with known feasible solutions).
Trick et al. (2012) describe a greedy matching heuristic (GMH) and
a two-exchange local search that are combined to build a simu-
lated annealing (SA) heuristic. The SA heuristic does reasonably
well on the real-life Major League Baseball problem of 2006, but
it does not perform so well on the TUP instances. Trick and Yildiz
(2011) incorporate the GMH into a large neighborhood search
guided by Benders cuts that help repair the solution being built
when the heuristic gets stuck. This improved GMH, which they call
GBNS, finds feasible solutions to 23 out of 25 instances with previ-
ously known solutions, with 16 of those solutions being improve-
ments over the best results at the time. In a follow-up paper, Trick
and Yildiz (2012) propose a genetic algorithm (GA) with a cross-
over operator that uses a matching scheme to recombine the indi-
viduals of a population. Their GA further improves the quality of 14
instances with respect to the GBNS results. As of August, 2013, the
results published in Trick (2013) indicate that the four best-known
solutions to the 14-team hard instances were obtained by Wauters
(2013). Table 1 shows how many of the 25 best-known solutions to
date have been found by each of the most successful methods de-
scribed above. The GA currently owns the majority of best-known
solutions (13 out of 25), including the best solution to the 30-team
instance.

The remainder of this paper is organized as follows. In Section 3,
we present the IP formulation of Trick and Yildiz (2011) and show
how it can be strengthened. We describe our relax-and-fix heuris-

tic in Section 4, and provide computational results in Section 5. We
conclude the paper and discuss future research directions in
Section 6.

3. IP formulations

For simplicity, we use letters i and j to refer to teams i and j, as
well as their respective home venues. In addition, we use letters u
and s to refer to an umpire and a round in the tournament,
respectively.

3.1. The original formulation

The IP formulation used by Trick and Yildiz (2011); Trick and
Yildiz (2012); and Trick et al. (2012) starts with the following input
data:

� Set of umpires U ¼ f1; . . . ;ng;
� Set of teams T ¼ f1; . . . ;2ng;
� Set of rounds S ¼ f1; . . . ;4n� 2g;

� OPP½s; i� ¼ j if i plays against j at venue i in round s
�j if i plays against j at venue j in round s;

�
� dij = distance in miles between venues i and j;
� CVs ¼ fs; . . . ; sþ n� d1 � 1g for any given round s 2 f1; . . . ;

4n� 2� ðn� d1 � 1Þg;
� CTs ¼ fs; . . . ; sþ bn2c � d2 � 1g for any given round

s 2 f1; . . . ;4n� 2� ðbn2c � d2 � 1Þg.

The decision variables are:

� xisu ¼
1 if the game at venue i inround s isassigned

toumpire u
0 otherwise;

8<
:

� zijsu ¼ 1 if umpire u is at venue i in round s and travelsf
to venue j in round sþ 10 otherwise:

We are now ready to state the formulation.

min
X
i2T

X
j2T

X
u2U

X
s2S:s<jSj

dijzijsu ð1Þ
X
u2U

xisu ¼ 1; 8 i 2 T; s 2 S : OPP½s; i� > 0; ð2Þ
X

i2T:OPP½s;i�>0

xisu ¼ 1; 8 s 2 S;u 2 U; ð3Þ
X

s2S:OPP½s;i�>0

xisu P 1; 8 i 2 T;u 2 U; ð4Þ

X
c2CVs :OPP½c;i�>0

xicu 6 1;
8 i 2 T;u 2 U; s 2 S :

s 6j S j �ðn� d1 � 1Þ;
ð5Þ

X
c2CTs

xicu þ
X

j2T:OPP½c;j�¼i

xjcu

 !
6 1;

8 i 2 T;u 2 U; s 2 S :

s 6j S j �ð n
2

� �
� d2 � 1Þ; ð6Þ

xisu þ xjðsþ1Þu � zijsu 6 1; 8 i; j 2 T;u 2 U; s 2 S : s <j S j; ð7Þ
xisu 2 f0;1g; 8 i 2 T;u 2 U; s 2 S; ð8Þ
zijsu 2 f0;1g; 8 i; j 2 T;u 2 U; s 2 S : s <j S j : ð9Þ

The objective function (1) minimizes the total distance traveled
by the umpires. Constraints (2) and (3) state that each game is ref-
ereed by an umpire, and each umpire is assigned to a game, respec-
tively. TUP constraints (ii), (iii), and (iv) from Section 1 are modeled
by (4)–(6), respectively. Finally, (7) ensures that game (x) and tra-
vel (z) assignments are consistent.

Trick and Yildiz (2011) improve the above formulation by
including the following constraints:
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