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a b s t r a c t

We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial appli-
cations. The bounds allow to distinguish three regions: one where arbitrage opportunities will never
exist, a second where arbitrage may be present, and a third, where arbitrage opportunities will always
exist. No-arbitrage bounds are derived in closed form for a given covariance matrix using the least pos-
sible number of scenarios. Empirical examples illustrate the practical potential of knowing these bounds.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in constructing discrete scenarios and simu-
lations of financial asset returns which are free from arbitrage. This
requirement for financial optimization models has been pointed
out by, among others, Klaassen (2002); Sodhi (2005), or Geyer,
Hanke, and Weissensteiner (2010, 2013). To that end, we investi-
gate the theoretical relation between expected excess returns and
the associated arbitrage opportunities. Our innovation is to provide
bounds for expected excess returns to determine whether or not
arbitrage is possible theoretically, before simulations have been
carried out. These bounds hold for the least possible number of
scenarios irrespective of the particular algorithm to be used, pro-
vided the algorithm matches the given covariance matrix.

The present paper can be put into the context of many meth-
ods4 which have been developed to obtain discrete approximations
of continuous distributions. Such methods attempt to find a compro-
mise between (statistical) accuracy and the curse of dimensionality,
or focus on computational efficiency. For example, in moment
matching (see, e.g., Høyland, Kaut, & Wallace, 2003; Høyland &

Wallace, 2001) the pre-specified moments of asset returns are
matched using a rather small number of scenarios (i.e. discrete mass
points) to obtain statistically acceptable approximations of continu-
ous distributions. As Klaassen (2002) has pointed out, the resulting
scenarios (or trees) may allow for arbitrage opportunities, since this
aspect is not controlled for in moment matching algorithms. Klaas-
sen describes how arbitrage opportunities can be detected, and
emphasizes the need to routinely check for arbitrage after each sim-
ulation. Alternatively, he suggests adding constraints to the nonlin-
ear moment matching problem. While he points out that adding
constraints ‘‘will complicate the numerical optimization’’ (p. 1516),
he does not provide any (numerical) evidence on the severity of this
complication, however. As a matter of fact, we are not aware of any
moment matching or other scenario generation algorithm which in-
cludes such constraints to prevent arbitrage at the outset.

Klaassen (1998) considers the problem of reducing the size of
an already arbitrage-free tree while maintaining the absence of
arbitrage. He suggests aggregating trees across states and/or time
to obtain smaller trees with comparable properties. However, since
his approach only works under the risk-neutral measure, it is not
suitable for financial applications like portfolio optimization as
pointed out by Kouwenberg (2001) and Geyer et al. (2010, 2013).

Scenario reduction methods as proposed by, for example, Pflug
(2001) or Heitsch and Römisch (2003, 2009) are driven by a similar
objective. They retain only a few paths from a very large number of
scenarios such that the approximate (i.e. ‘‘reduced’’) and the origi-
nal distribution are close in terms of some probability metric.
However, applying scenario reduction techniques entails the risk
of arriving at scenario trees which admit arbitrage opportunities.
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A necessary condition for the absence of arbitrage is that the
branching factor (i.e., the number of arcs emanating from a node)
at each node of the tree must at least equal the number of non-
redundant assets in the optimization problem (e.g. Harrison &
Kreps, 1979). While it is straightforward to use that minimum
branching factor, resulting trees may still admit arbitrage opportu-
nities, since that condition is not sufficient. This is complicated by
the fact that existing implementations of scenario reduction algo-
rithms do not allow for controlling the branching factor for each
node in the tree. Pflug (2001) proposes a scenario reduction meth-
od to optimally discretize a continuous distribution by minimizing
the supremum of the distance between the objective function eval-
uated using the original probability distribution and its discrete
approximation. However, Geyer et al. (2010) show that the equiv-
alence of the original and approximated problems rests on the (im-
plicit) assumption that the sup-distance is finite. This assumption
is violated when there are arbitrage opportunities in the approxi-
mated problem. In principle, no-arbitrage constraints could be
added to the discretization problem. However, deriving a con-
strained solution for that problem in closed form does not seem
to be a trivial task. As it stands, trees obtained by scenario reduc-
tion must subsequently be checked for arbitrage.

King, Koivu, and Pennanen (2005) use a Gauss-Hermite process
for numerically computing bounds for the arbitrage-free prices of
an option. An attractive feature of these processes is that the
discretized one-step conditional probabilities match a maximum
number of moments of the normal distribution (i.e. with m
branches, the Gauss-Hermite quadrature matches 2m� 1 mo-
ments). The no-arbitrage bounds for an option are based on convex
duality properties and require some other options available for
trading. In this respect their paper also belongs to those which re-
quire solving an optimization problem to make statements about
no-arbitrage (bounds).

This review of the literature makes clear that existing simula-
tion methods mainly focus on statistical properties. The aspect of
no-arbitrage, which is key in financial optimization, usually only
enters ex-post. The (occasionally) proposed inclusion of con-
straints to guarantee no-arbitrage has not been implemented in
any of the well-known scenario generation procedures we are
aware of. In this paper we take a point of view which starts out
from the no-arbitrage requirement. We investigate how the pre-
specified first and second moments determine arbitrage possibili-
ties in the discrete state space of simulated returns. This point of
view and the associated results distinguish the present paper from
the literature. Before simulations have been done, we are able to
answer the question whether a vector of expected excess returns
does allow for arbitrage or not. As a main contribution of the paper,
this replaces the usual tests for arbitrage which require solving a
linear program (see Klaassen, 2002). For a given covariance matrix
we derive bounds for expected excess returns in closed form. Using
well-known results from linear algebra and standard techniques
from convex optimization we are able to distinguish three possible
cases on the basis of two concentric (hyper) ellipsoids. These sep-
arate the space of all possible expected excess returns into three
regions: (a) Arbitrage opportunities always exist. In this case sim-
ulation or re-sampling need not even be attempted. For the appli-
cation at hand the intended stochastic features of asset returns
need to be reconsidered, i.e. assumptions about covariances and/
or expected excess returns need to be altered, thereby taking into
account that these parameters may have been estimated with large
standard errors. (b) Arbitrage may or may not exist depending on
the sample at hand. In this case arbitrage checks are still required
to decide whether re-sampling is necessary or not. However, the
distance of the vector of expected excess returns from the
origin of the (hyper) ellipsoids indicates how likely the need for
re-sampling is ex-ante. This distance can also be used in cases (a)

and (b) to quantify the required change in expected excess returns
to guarantee no-arbitrage. (c) Arbitrage opportunities will never
exist. Knowing this has the advantage that ex-post arbitrage checks
become redundant.

To derive these bounds and to identify these regions we make
use of the Fundamental Theorem of Asset Pricing. We only assume
that the assets’ first and second moments exist, and make no
assumptions about the distribution of returns. To account for the
aspect of dimensionality we derive the bounds for the smallest
possible state space. This implies that the associated trees have
the least possible size but still match the first two moments of as-
set returns. We finally illustrate how information about bounds
can be empirically derived and used.

In Section 2 we derive no-arbitrage bounds for expected excess
returns. We also provide results from empirical illustrations in Sec-
tion 3. Main features of the approach are summarized in Section 4.

2. No-arbitrage bounds

The results on no-arbitrage bounds derived below will hold
irrespective of a particular realization of excess returns R. Thus,
the no-arbitrage properties of expected excess returns l can be
judged ex-ante (i.e. before simulations are run). However, for
deriving these bounds it is instructive to start by considering no-
arbitrage conditions associated with a particular realization, and
then generalize to any realization. In Section 2.1 we show how to
simulate returns such that their covariance is exactly matched. In
Section 2.2 we state necessary and sufficient conditions for no-
arbitrage. In Section 2.3 we explore the discrete state space associ-
ated with simulated returns. We use the conditions established in
Section 2.2 to derive general bounds for expected excess returns to
rule out arbitrage opportunities in simulated returns (first for a
particular realization and subsequently for any realization).

2.1. Return realizations

To simulate single-period returns we proceed in two steps. First,
we generate realizations of mean-zero returns Y with the target
covariance U. Second, we consider excess returns R with mean l.
All numerical results in the main part of the paper are based on nor-
mal random numbers. However, while any simulation requires dis-
tributional assumptions, we emphasize that all conclusions and
closed-form results on no-arbitrage bounds derived in Section 2.3
do not depend on the distribution of returns. We only assume that
first and second moments exist.

When defining the number of scenarios m (i.e. the number of
realizations of random returns) we need to account for three as-
pects: (a) According to Harrison and Kreps (1979) and Harrison
and Pliska (1981) a necessary condition for no-arbitrage is m P n
(i.e. at least as many discrete states as assets). (b) As we are going
to show in the next paragraph, more realizations than assets are re-
quired to exactly match the covariance matrix U, which implies
m P n + 1. (c) Our objective is to match the covariance and to rule
out arbitrage with the smallest possible scenarios (or trees) to safe-
guard against the curse of dimensionality. Therefore, for the rest of
Section 2 we set m�n + 1; this leads to the minimal tree size, which
satisfies the necessary condition for no-arbitrage and allows to
match the covariance exactly. At the same time, this also corre-
sponds to considering a complete market with n risky assets and
a risk-free asset.

To construct Y we generate an m�n matrix of realizations X
which are required to have the following properties: each row is
equally likely, the mean of each column is zero, the standard devi-
ation of each column is one, and the columns of X are orthogonal
(i.e. ðX0XÞ=m ¼ I). In general, the columns of a simulated m�n
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