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a b s t r a c t

We present a methodology for fitting time-varying paired comparisons models in which the parameters
are allowed to vary deterministically, as opposed to stochastically, with time. Our dynamic paired com-
parisons model is based on a new closed-form for Stern’s continuum of paired comparisons models which
include the Bradley–Terry model and the Thurstone–Mosteller model. The dynamic element of our model
is facilitated by utilising barycentric rational interpolants BRIs. An incidental result of our work is to show
that BRIs often provide a better fit to data than the obvious alternative of spline interpolation. We use our
model to shed light on the debate of who is the greatest tennis player of the Open Era of men’s profes-
sional tennis since 1968. Constructing a single rankings list from our model is not trivial as there are
many alternative metrics that could be used to identify which player was the best ever. We present three
alternative rankings lists derived from our model. In general our rankings lists largely agree with the
rankings list based on number of Grand Slam titles won, which, to some extent, validates our choice of
metrics. So who is the greatest tennis player of the Open Era? Roger Federer seems like the most likely
candidate, with Bjorn Borg and Jimmy Connors close behind.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Rankings models arise in many applications in quantitative
analysis. From assessing University league tables, to modelling
individual choice behaviour (Luce, 1959) to rankings of rival candi-
dates in elections (Gormley & Murphy, 2008) to ranking countries’
performances at the Olympics (Sitarz, 2012), applications of rank-
ings models are widespread. In this paper we concentrate on mod-
els for paired comparisons (when many competitors compete in a
series of head-to-head competitions) and extend these models to
allow for time-varying competitor strengths.

Paired comparisons models are formulated so that each com-
petitor being compared is associated with a strength parameter,
a. The probability of one competitor beating another is then given
by a function of the ratio of the strength parameters of the two
competitors in question. More generally, the probability, pij, that
competitor i beats competitor j, is given by pij ¼ Fðli � ljÞ, where
li ¼ lnðaiÞ, and F is a distribution function. The Bradley–Terry
(BT) model (Bradley & Terry, 1952) assumes a logistic distribution
for F, and the Thurstone–Mosteller (TM) model (Thurstone, 1927)
uses a normal distribution. In terms of the strength parameters,

the formulae are respectively pij ¼ ai
ðaiþajÞ

, and pij ¼ U ln ai
aj

� �� �
,

where U is the standard normal distribution function.

Stern (1990) gives a formula for the probability of a ranking
based on a gamma distribution for the underlying times to an
event. These times can be thought of as the time for each compet-
itor to run a race in which the quickest wins. One can also consider
the random variable to be a score, where the player with the low-
est score wins, as in golf. For Stern’s model,

pij ¼
Z 1

0
fiðxÞSjðxÞdx ¼

Z 1

0
FiðxÞfjðxÞdx; ð1Þ

where f is the pdf fiðxÞ ¼ aiðaixÞb�1 expð�aixÞ=CðbÞ of the gamma
distribution, Sj the survival function and Fi the distribution function.
When b ¼ 1 the model reduces to the BT model. Stern (1990) shows
how his ‘gamma comparison model’ interpolates between the BT
model and the TM model as b!1 and refers to the model as a con-
tinuum of paired comparison models. This is clearly a useful model,
but Stern (1992) concludes that for samples of the size usually
encountered, predictions are not sensitive to the value of b. How-
ever, as we will see, given our large dataset, we can revisit this prob-
lem and see whether it is now possible to determine which value of
b fits the data best.

The gamma comparison model given in (1) is static in that the
strengths of the competitors do not change over time. However,
in many applications, time invariant strengths are not appropriate.
For example, when modelling in sport, it is unreasonable to assume
that team (or player) strengths are constant. Similarly when mod-
elling consumer preferences for brands, changing fashions dictate
brand strengths and they are unlikely to be constant over time.
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In response, more recent work on modelling paired comparisons
has concentrated on extending models to allow for time-varying,
or dynamic, paired comparisons. For example, Glickman (1999)
presents an approximate Bayesian updating algorithm for estimat-
ing dynamic strength parameters of the Bradley–Terry model. The
parameters evolve stochastically and he uses the model to con-
struct a list of the best chess players of all time, together with a
rankings table of the then current tennis players. Knorr-Held
(2000) presents a methodology, based on a model that is more gen-
eral than the Bradley–Terry model, to estimate stochastically
evolving team strengths.

All previous work on dynamic paired-comparisons models em-
ploys a stochastic evolution of the strength parameters. There are
however, situations when one can justify modelling the evolution
of strength parameters deterministically. For individual sports
such as tennis, where players compete as individuals, there is
clearly a strong systematic component to the evolution of their
strength. Typically, as we shall see, a player’s strength increases
in the early part of their career, reaches a peak and then slowly de-
clines until the player withdraws from competing. We believe it is
more appropriate to model this strength so that it varies smoothly
over a player’s career and hence a deterministic evolution is appli-
cable. Undoubtedly a stochastic element is present, for example
when a player is injured. However, injured players normally stop
competing until largely recovered. In either case, the contribution
of the deterministic component to strength evolution surely out-
weighs that of the stochastic element.

When modelling in individual sports, we therefore propose
using a paired comparisons model that allows for a deterministic
evolution of player strengths. In this paper we first present a closed
form for Stern’s gamma comparison model and then extend it to al-
low for time-varying strength parameters for each competitor uti-
lising barycentric rational interpolants. We choose to demonstrate
our model using a rich and interesting data set: the results of ten-
nis matches from men’s professional tennis Grand Slam tourna-
ments since 1968, and look for an answer to the question: who is
the greatest player of all-time?

The paper is organised as follows: Section 2 presents a closed
form for Stern’s gamma comparison model. Section 3 describes
our time-varying paired comparisons model with two tennis-moti-
vated extensions to the model given in Section 4. Results from fit-
ting the model to tennis data are given in Section 5, and Section 6
concludes the paper with some closing remarks.

2. A closed form for Stern’s gamma model for paired
comparisons

Stern (1990) presents a model that generalises the BT and TM
paired comparisons models in two aspects: first, it incorporates
both the BT and TM models and all models inbetween, and second,
it generalises paired comparisons to the case of multiple compari-
sons, of which the Plackett–Luce model (Plackett, 1975) is a nota-
ble member. In this paper we consider the case of paired
comparisons only and show that, for this special case of Stern’s
model, that it is possible to obtain the probability that player i wins
as the distribution function of a symmetric beta distribution. We
generalise Stern’s model slightly first, to allow players i and j to
have different shape parameters bi and bj. The result we use to de-
rive our closed form parameterisation is that the ratio of two gam-
ma-distributed random variables follows a modified beta
distribution (see Johnson, Kotz, & Balakrishnan, 1994).

On standardising the random variables in (1), we have

pij ¼
Z 1

0

Z ai=ajs

0

zbi�1 expð�zÞsbj�1 expð�sÞdzds
CðbiÞCðbjÞ

:

Now set z ¼ ts; the Jacobian of the transformation is s, so

pij ¼
Z 1

0

Z ai=aj

0

tbi�1sbiþbj�1 expð�ð1þ tÞsÞdt ds
CðbiÞCðbjÞ

:

We now change the order of integration, which is allowed, as Fubin-
i’s theorem is satisfied. Integrating over s we obtain

pij ¼
Cðbi þ bjÞ
CðbiÞCðbjÞ

Z ai=aj

0

tbi�1 dt

ð1þ tÞbiþbj
;

and changing variable to y ¼ t=ð1þ tÞ so that t ¼ y=ð1� yÞ and
dt=dy ¼ ð1� yÞ�2 we obtain

pij ¼
Cðbi þ bjÞ
CðbiÞCðbjÞ

Z ai=ðaiþajÞ

0
ybi�1ð1� yÞbj�1 dy; ð2Þ

i.e. the probability that player i beats player j is the distribution
function of the beta distribution. For Stern’s model, bi ¼ bj � b so
that pij is the distribution function of the symmetric beta distribu-
tion. This form of Stern’s model is excellent for computation, as
the incomplete beta ratio is a special function that is widely avail-
able from software platforms such as fortran, MatLab or R. We be-
lieve that analysts fitting paired comparisons models could adopt
this generalised model in (2), rather than choosing between the
BT or TM model.

We note that it would be possible to fit an individual shape
parameter b for each player, so departing from the class of linear
models, for which F must be a symmetric distribution, i.e.
Fð�xÞ ¼ 1� FðxÞ. However, for the present we restrict ourselves
to a common value of b for all players.

3. A time-varying paired comparisons model

Our approach to allow for time-varying strengths, such that
ai ! aiðtÞ in (2), is to estimate strength parameters at each of sev-
eral nodes for every player and then interpolate between the nodes
to obtain values of a player’s strength at any point during his ca-
reer. The choice of the number of nodes is described below. The
obvious methodology to adopt for the interpolation would be
spline interpolation. However, we find that barycentric rational
interpolants (BRI) (Floater & Hormann, 2007; Press, Teukolsky,
Vetterling, & Flannery, 2007) provide a more accurate fit in general,
and have the added advantage of being simpler.

The time-varying strength is modelled using the barycentric ra-
tional interpolant, so that the strength of player i at time t is given
by

aiðtÞ ¼
Pni

k¼1wikkik=ðt � tikÞPni
k¼1wik=ðt � tikÞ

ð3Þ

where kik is the kth fitted strength of player i, i.e. the strength at
time tik. There are ni such nodes for player i, and we discuss the
weights wik next.

Berrut (1988) gave weights for a barycentric rational interpo-
lant, where a ratio of polynomials is used to interpolate between
the points kik. Berrut’s interpolant was free of poles, a potential
problem with ratios of polynomials. This approach was developed
further by Floater and Hormann (2007) who derived sets of
weights giving accuracies of hdþ1 where d is the order of the inter-
polant and h the largest step size. The weights of order zero are
wk ¼ ð�1Þk, and weights of order one are

wk ¼ ð�1Þk 1
tk � tk�1

þ 1
tkþ1 � tk

� �
;

with terms with out-of-range values x0 or xnþ1 omitted. For equally-
spaced values of yik the weights are again wk ¼ ð�1Þk, but now the
end nodes have weight halved. This resembles the halving of
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