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a b s t r a c t

Given an undirected graph and a collection of vertex subsets with suitable costs, we consider the problem
of partitioning the graph into subgraphs of limited cost, splitting as little as possible the given subsets
among different subgraphs. This problem originates from the organization of a region (the graph) includ-
ing several towns (the vertices) into administrative areas (the subgraphs). The officers assigned to each
area take care of activities which involve several towns at a time (the subsets). An activity involving
towns from more areas engages the officers of all those areas, leading to redundancies which must be
minimized.

This paper introduces a column generation approach to compute a lower bound for the problem. Since
the pricing subproblem is NP-hard, we solve it with a Tabu Search algorithm, before applying a suitably
strengthened multi-commodity flow formulation. Moreover, we also compute an upper bound for the
overall problem with a primal heuristic based on the idea of diving and limited discrepancy search.
The computational results refer to two real-world instances, a class of realistic instances derived from
them, and two different classes of random instances.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Homogeneous Areas Problem (HAP) can be formulated as fol-
lows. Let G ¼ V ; Eð Þ be an undirected graph with V ¼ 1; . . . ;nf g,
S# 2V a collection of subsets of vertices, q : S! Rþ a cost func-
tion defined on S and Q a cost threshold. Finally, let k be an integer
positive number. Given any subset of vertices U # V , we denote the
cost of the subgraph induced by U as

P
S2S:S\U–; qS, i.e. the sum of

the values qS for all subsets S intersecting U. The problem requires
to partition graph G into at most k vertex-disjoint connected sub-
graphs Gi ¼ Ui; Eið Þ such that the cost of Gi does not exceed Q for
all i and the total cost

/ ¼
X

i

X
S2S:S\Ui–;

qS ð1Þ

is minimum. The HAP is strongly NP-hard (Ceselli, Colombo, Cor-
done, & Trubian, in press).

This problem derives from a practical requirement, concerning
the partitioning of two administrative regions in Northern Italy
(the provinces of Milan and Monza) into ‘‘homogeneous areas’’.
In that case, the vertices correspond to towns, the edges to pairs
of adjacent towns, each subset S 2S represents an activity involv-
ing a subset of towns and requiring from the officers of the prov-
ince administration a known amount of working hours, qS. The

aim of the problem is to divide the province into connected areas
(subgraphs) and to assign a team of officers to each area, in such
a way that each activity is split as little as possible among different
areas. This is due to the fact that the officers in charge of an area
need to be trained on all the activities involving the towns of the
area and, therefore, splitting an activity implies a redundancy
(more officers trained on the same topics). The cost of a subgraph
expresses the number of working hours required from the officers
in charge of the corresponding area. The limited number of work-
ing hours available for each officer imposes an upper threshold on
the cost of each area. The value of this threshold can also be tuned
to improve fairness among the teams.

In Fig. 1 we report a sample instance and some of its solutions.
Fig. 1(a) provides a graph G with 7 vertices and 9 edges, three
subsets with costs qS1

¼ 10; qS2
¼ 9 and qS3

¼ 11, a cost threshold
Q ¼ 25 and a maximum number of subgraphs k ¼ 3. If the nodes
could be partitioned so as to keep all subsets in S unsplitted, the
overall cost would hit the theoretical lower bound

P
S2SqS ¼ 30.

This value, however, cannot be reached due to the cost threshold
imposed on each subgraph. Fig. 1(b) shows an optimal solution,
with two subgraphs and a total cost equal to qS1

þ 2qS2
þ qS3

¼ 39
(subset S2 intersects both the subgraphs). Fig. 1(c) shows a
suboptimal solution with three subgraphs, in which both S1 and
S2 intersect two subgraphs, so that the overall cost is
2qS1

þ 2qS2
þ qS3

¼ 49. Finally, the solution in Fig. 1(d) is unfeasible
since the subgraph induced by U ¼ 1;2;3;4;5f g intersects all three
subsets and its cost qS1

þ qS2
þ qS3

¼ 30 exceeds the threshold
Q ¼ 25.
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This work proposes a column generation approach to the HAP.
Since in our decomposition the pricing subproblem is itself NP-
hard, we apply a customized heuristic before solving it exactly
with an Integer Linear Programming (ILP) formulation, for which
we introduce some valid inequalities. The heuristic is a Tabu
Search algorithm, while the exact approach exploits a multicom-
modity flow formulation. Section 2 introduces a compact formula-
tion of the problem, and an extended one, solved by a column
generation approach. Section 3 deals with the pricing subproblem,
discussing its formulation with some strengthenings, its computa-
tional complexity and a heuristic approach to solve it. Section 4
presents a primal heuristic for the HAP. It is based on the column
generation framework and exploits the concepts of diving and lim-
ited discrepancy search. The final section presents the computa-
tional results.

1.1. On the relationship with graph partitioning problems

The HAP can be seen as a variant of the Graph Partitioning Prob-
lem (GPP). This section provides some references to the huge liter-
ature on the GPP, a small example to illustrate the specific features
of the HAP and a discussion of the differences it exhibits with re-
spect to the other related models. A more detailed discussion, with
counterexamples to the possibility of easily reducing the HAP to a
standard GPP, can be found in Ceselli et al. (in press).

Given an undirected edge-weighted graph G ¼ ðV ; EÞ, the most
common versions of the GPP ask to divide the vertex set V into a
given number k of nonempty, pairwise disjoint subsets, such that
the edge-cut, i.e. the total weight of the edges that connect vertices
in different subsets, is minimized. This basic problem admits a
number of variations; see, e.g., the survey in Fjällström (1998).
Several different approaches have been proposed to solve them,
such as hierarchic multi-level heuristics (Sanders & Schulz,
2011), geometry-based and flow-based methods (Arora, Rao, &
Vazirani, 2008), genetic approaches (Kim, Hwang, Kim, & Moon,
2011), spectral methods (Donath & Hoffman, 1973), mathematical
programming approaches (Fan & Pardalos, 2010), local search
metaheuristics and integrated approaches (Osipov, Sanders, &
Schulz, 2012). The HAP differs from these classical GPPs both in
the constraints and in the objective function, which pose specific
challenges to a solving algorithm.

1.1.1. Cardinality constraint
In the GPP, the number k of vertex-disjoint subsets is usually

given, and the subsets are required to be nonempty, since their
cardinalities, n1; . . . ;nk, with

Pk
j¼1nj ¼ jV j are explicitly imposed

(Guttmann-Beck & Hassin, 2000) or constrained to be approxi-
mately of the same size, see e.g. Osipov et al. (2012). In the HAP,
k is just an upper threshold, so that the subsets of vertices Ui are
allowed to be empty. In fact, merging two subsets into a single
one is always profitable, and only the cost threshold Q possibly for-
bids to do it.

1.1.2. Cost threshold
The HAP is related to the Node-capacitated Graph Partitioning

Problem (Ferreira, Martin, de Souza, Weismantel, & Wolsey,
1998), in which the total weight of each subset in the partition is
limited by a threshold. However, the threshold is managed differ-
ently in the HAP: since it is not associated to single vertices, the
cost of a subset U does not increase linearly as new vertices are
included, but stepwise as new subsets S 2S intersect U. Such a
nonlinear dependence is much harder to handle.

1.1.3. Connectivity constraint
The connectivity constraint is usually not imposed in GPPs,

where the edges of the graph are taken into account only when
computing the objective function. Quite commonly, the edge costs
model a proximity measure, and the subsets end up naturally to be
connected in the optimal solution. In the HAP, on the contrary, the
edges determine the feasibility of the solutions, since each subset
must induce a connected subgraph on G, but they have no relation
with the objective function. In fact, even considering the smaller
benchmark instances, which can be solved exactly, the optimal re-
sult obtained relaxing the connectivity constraints is on average
35% lower than the one obtained respecting them (Ceselli et al.,
in press). This suggests that neglecting the connectivity constraint
would not provide meaningful information on the original problem
and that classical methods ignoring this constraint would not pro-
vide useful solutions.

1.1.4. Objective function
The objective function of the classical GPPs depends linearly on

the cost of the edges whose extreme vertices belong to different
subgraphs. Sometimes, this cost is tuned by a function of the cardi-
nality of the subgraphs; see, e.g., Matula and Shahrokhi (1990). The
objective function of the HAP is completely independent from the
edge set E, and depends nonlinearly on the intersections between
the subsets in S and the subsets of vertices of the subgraphs.

These remarks on the difference between the constraints and
the objective function of the HAP with respect to other GPPs have
moved us to develop ad hoc methods, instead of straightforwardly
adapting algorithms drawn from the literature.

2. Mathematical programming formulations

Hereafter, we present two different formulations of the HAP.
The first one is a compact multicommodity flow formulation that
can be directly solved using a commercial ILP solver. The second
one is an extended formulation which associates a variable to each
feasible subgraph. At the end of the section, we describe the col-
umn generation approach used to solve the continuous relaxation
of the extended formulation.

2.1. Compact formulation

The HAP admits a multicommodity flow formulation based on
an auxiliary directed graph G0 ¼ V ; E0

� �
, derived from G replacing

(c)

(a) (b)

(d)

Fig. 1. (a) Sample instance having qS1
¼ 10; qS2

¼ 9; qS3
¼ 11 and Q ¼ 25; (b)

Optimal solution with cost qS1
þ 2qS2

þ qS3
¼ 39; (c) Sub-optimal solution with

cost 2qS1
þ 2qS2

þ qS3
¼ 49; (d) Unfeasible solution: the subgraph induced by

U ¼ 1;2;3;4;5f g has cost qS1
þ qS2

þ qS3
¼ 30 > Q .
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