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a b s t r a c t

This paper presents a binary optimization framework for modeling dynamic resource allocation prob-
lems. The framework (a) allows modeling flexibility by incorporating different objective functions, alter-
native sets of resources and fairness controls; (b) is widely applicable in a variety of problems in
transportation, services and engineering; and (c) is tractable, i.e., provides near optimal solutions fast
for large-scale instances. To justify these assertions, we model and report encouraging computational
results on three widely studied problems – the Air Traffic Flow Management, the Aircraft Maintenance
Problems and Job Shop Scheduling. Finally, we provide several polyhedral results that offer insights on
its effectiveness.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Allocation of resources over time is a problem of significant
importance that many organizations in industry, government and
education face. Correspondingly, resource allocation problems
have received considerable attention in the Operations Research
literature. In real world applications of resource allocation prob-
lems, specific issues arise: assignment of requests to resources over
time, allowing the flexibility of utilizing alternative resources to
complete the requests, fairness issues among different requests,
among others. There has been extensive work on specific examples
of resource allocation problems (for example, the extensive litera-
ture on Job Shop Scheduling). Still, to the best of our knowledge,
we are not aware of a unified approach that can be easily modified
to accommodate variations, while simultaneously being computa-
tionally tractable for large scale instances. On the contrary, it is
widely believed that optimization might not be the right approach
for certain classes of resource allocation problems such as schedul-
ing for example. In fact, commercial solvers like ILOG for schedul-
ing problems are typically not optimization based, but rather rule
based.

Our aspiration in this paper is to develop a widely applicable,
flexible and tractable modeling framework based on binary optimi-
zation that is capable of modeling and solving large scale instances
for a variety of resource allocation problems over time. The paper

has its intellectual origins with the work of Bertsimas and Stock
(1998) on air traffic flow management, which is a resource alloca-
tion problem over time. In this problem, the resources are airports
and sectors of the airspace, the requests are flights and the objec-
tive is to minimize delays in the system. To this date, within the
scope of air traffic flow management, this modeling approach has
proven successful, as it continues to be used extensively by several
researchers and practitioners around the world. Two significant
generalizations of the model in the context of air traffic flow man-
agement that suggest flexibility include: (a) the work of Bertsimas
and Gupta (submitted for publication) that shows how fairness is-
sues among airlines can be modeled in a computationally effective
way, and (b) the work of Bertsimas, Lulli, and Odoni (2011) that al-
lows the use of alternative routing of flights, when the current re-
sources decrease possibly because of bad weather. Given the
success of this modeling approach to air traffic flow management,
it is natural to ask:

(a) Can we develop a modeling approach to general dynamic
resource allocation problems that is flexible, tractable and
widely applicable?

(b) Can we give some insights (both theoretical and empirical)
on the reasons of the approach effectiveness in the context
of resource allocation?

The broad framework we have in mind for Dynamic Resource
Allocation Problem (DRAP) is as follows. The primitive quantities
are: a set of resources R and a set of requests I belonging to a
set of owners O that need to be processed by these resources over
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a time horizon T . Each request i needs to be completed by certain
time and it can be completed by using alternative sets of resources
R1

i ; . . . ;Rni
i . Different allocations of resources to requests over time

result in delays if the request is completed after its desired time.
The overall goal is to allocate resources to requests over time in or-
der to complete the requests as efficiently as possible (minimum
delay), potentially using alternative resources and ensuring that
the distribution of delays amongst these requests (and implicitly
to their owners) is fair.

In the opening sentence of his 1963 book Linear Programming
and Extensions (Dantzig, 1963), George Dantzig writes: ‘‘the final
test of any theory is its capacity to solve the problems which orig-
inated it’’. Motivated by this philosophy, we first present the mod-
eling framework, and then use it to model and solve the following
three widely-studied problems:

1. Air Traffic Flow Management (ATFM). Air Traffic Flow
Management aims to prevent local demand-capacity
imbalances by adjusting the flows of aircraft on a national
or regional basis. ATFM models optimize for each flight
the time of departure, the route selected, the time required
to traverse each sector, and the time of arrival at the desti-
nation airport, taking into account the capacity of all the
elements of the air traffic management system. In our gen-
eralization, each request will represent a scheduled sector-
based path from takeoff through landing of a flight. The
resources are the runways for takeoff and landing as well
as the en-route airspace sectors. The fairness controls will
be imposed at the destination airports where the final flight
sequences are desired to be as close to the original sched-
uled sequence as possible. Finally, the alternative resources
allows the option of flying a different origin–destination
route for each aircraft.

2. Aircraft Maintenance Problem (ACM). The Aircraft Main-
tenance Problem is an important dynamic resource alloca-
tion problem in the airline industry. In this problem, an
aircraft requests a large number of inspection and repair
activities for which resources like equipments, sophisti-
cated tools and highly specialized skills are used over sev-
eral months.

3. Job Shop Scheduling (JSP). Job Shop Scheduling is one of
the most notoriously hard combinatorial optimization
problem. It entails processing a set of jobs on machines
with the objective of minimizing some function of the com-
pletion times of the jobs (examples include the makespan,
i.e., the maximum completion time and the minsum, i.e.,
the average completion time), subject to two requirements:
(a) the sequence of machines for each job is prescribed; and
(b) each machine can process at most one job at a time, and
the schedule must be non-preemptive. In this paper, we
model this problem within our framework and solve it for
the two most widely applicable objective functions we
mentioned earlier, makespan and minsum.

1.1. Literature review

In the literature, there is a lack of a scheduling framework of the
form aspired in this research effort. Nonetheless, we attempt to
enumerate the relevant papers which have the same taste.
Bar-Noy, Bar-Yehuda, Freund, Naor, and Schieber (2001) present
a unified approach to approximating resource allocation and
scheduling. There has been recent work on using approximate
dynamic programming (ADP) methods to solve dynamic resource
allocation problems which overcome the ‘‘curses of dimensional-
ity’’ of standard dynamic programming methods. Using ADP,
Powell and Topaloglu (2005) describe solution strategies for

large-scale resource allocation problems under uncertainty. Simi-
larly, Gocgun and Ghate (2012) develop an ADP method that uses
Lagrangian relaxation and constraint generation for dynamic sto-
chastic resource scheduling problems. ADP techniques have also
been used by Erdelyi and Topaloglu (2010) to solve a dynamic
capacity allocation problem and by Powell and Van Roy (2004)
who present computationally efficient algorithms for a mathemat-
ical model of dynamic resource allocation motivated by problems
in transportation and logistics. In terms of specific applications,
Menasce and Casalicchio (2004) design a framework for resource
allocation in grid computing, whereas, Alhusaini, Prasanna, and
Raghavendra (1999) focus on a unified resource scheduling frame-
work for heterogeneous computing environments.

We next review relevant literature on the three problems dis-
cussed in this section.

� ATFM. This is an extensively studied problem. Starting with
the first paper by Odoni (1987) in 1987, there have been a
plethora of proposals attacking various aspects of the
problem. One of the most comprehensive models is by
Bertsimas and Stock (1998) which considers the problem
of controlling release times and speed adjustments of
aircraft while air-borne for a network of airports taking into
account the capacitated airspace. For a detailed survey of
the various contributions and a taxonomy of all the ATFM
problems, see Bertsimas and Odoni (1997) and Hoffman,
Mukherjee, and Vossen (2011).

� ACM. Please see Gharbi, Girard, Pellerin, and Villeneuve
(1997) and Dijkstra, Kroon, Solomon, Van Nunen, and Van
Wassenhove (1994) for details on this problem. For the
special case of aircraft engine maintenance, Zarybnisky
(2011) proposes near-optimal approximation algorithms.
For F-series fighter aircraft (specifically, F-15 and F-100),
Forbes and Wyatt (1975) and Amouzegar, Galway, and
Geller (2002) contain details on the dependency between
various maintenance components in the context of aircraft
engine maintenance.

� JSP. There have been a plethora of proposals for JSP which
utilize both exact methods and heuristic approaches. The
earliest exact method can be traced back to Giffler and
Thompson (1960) in 1960. Thereafter, many branch and
bound type algorithms were developed by Carlier and
Pinson (1989), Applegate and Cook (1991), Brucker, Jurisch,
and Sievers (1994). An approach based on exploiting the
disjunctive graph representation of JSP was developed by
Adams, Balas, and Zawack (1988) and Balas and Vazacopoulos
(1998). These are known as Shifting Bottleneck methods.

1.2. Structure of the paper

Section 2 describes the proposed binary optimization frame-
work. It introduces the constraints for scheduling, usage of alterna-
tive resources and fairness controls. Section 3 enumerates several
examples of problems and formulates the three applications men-
tioned in this section within our framework. Section 4 presents
theoretical evidence (by providing several polyhedral insights)
and Section 5 presents computational evidence on the strength
of the overall framework. Section 6 contains concluding remarks.

1.3. Notation and preliminaries

We denote scalar quantities by lowercase, non-bold face sym-
bols (e.g., w 2 R; k 2 N), vector quantities by lowercase, boldface
symbols (e.g., w 2 Rn; n > 1), and matrices by uppercase, boldface
symbols (e.g., A 2 Rn�n; n > 1).
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