
Discrete Optimization

Scheduling with few changes

Torsten Mütze
Institute of Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland1

a r t i c l e i n f o

Article history:
Received 4 January 2013
Accepted 11 November 2013
Available online 20 November 2013

Keywords:
Assignment problem
Changeover cost
Algorithm

a b s t r a c t

In this work we consider scheduling problems where a sequence of assignments from products to
machines – or from tasks to operators, or from workers to resources – has to be determined, with the goal
of minimizing the costs (=money, manpower, and/or time) that are incurred by the interplay between
those assignments. To account for the different practical requirements (e.g. few changes between differ-
ent products/tasks on the same machine/operator, few production disruptions, or few changes of the
same worker between different resources), we employ different objective functions that are all based
on elementary combinatorial properties of the schedule matrix. We propose simple and efficient algo-
rithms to solve the corresponding optimization problems, and provide hardness results where such algo-
rithms most likely do not exist.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many industrial production environments, considerable costs
(=money, manpower, and/or time) are incurred whenever the pro-
duction is disrupted, e.g. to readjust, retool or clean the machines.
Undoubtedly due to their relevance in numerous practical applica-
tions, scheduling problems that aim to minimize these costs have
received a lot of attention in the literature (see e.g. Allahverdi,
Ng, Cheng, & Kovalyov, 2008; Bła _zewicz, Ecker, Pesch, Schmidt, &
We�glarz, 2001; Brucker, 2007 and references therein). Another
fundamental problem in combinatorial optimization is the assign-
ment problem, where tasks are to be assigned to machines, such
that the costs to complete all the tasks are minimized (see e.g.
Ahuja, Magnanti, & Orlin, 1993; Çela, 2002; Cook, Cunningham,
Pulleyblank, & Schrijver, 1998; Pentico, 2007).

In this work we consider a family of scheduling problems at the
intersection of the two above-mentioned problems: We are inter-
ested in finding an entire sequence of assignments, and the costs
are incurred (only) by the interplay between those assignments.
More specifically, we are given a set of parts f1;2; . . . ;ng and a
sequence of products P1; . . . ; P‘, each consisting of a subset of the
parts, Pi # f1;2; . . . ;ng. There are m identical machines, and in
the ith step of the production, product Pi ¼: fp1; . . . ; pkg is produced
by assembling the corresponding parts p1; . . . ; pk. For this purpose
the parts p1; . . . ; pk have to be assigned to k of the machines, and
the remaining m� k machines are idle. If m P n, then we can
reserve each machine for only one particular part throughout the
production and assign all occurrences of this part to this machine

(this is considered an ‘ideal’ schedule). In practice however, we
usually have m < n (there could be as few as m ¼maxi2½‘�jPij ma-
chines), and a schedule will necessarily be more ‘disordered’, i.e.,
we cannot avoid assigning different parts to the same machine in
subsequent time slots, or assigning the same part to different ma-
chines during the production. Later, we will formally define four
different objective functions that measure this ‘disorder’ in a sche-
dule (see Fig. 1 below).

To demonstrate that our model is quite versatile, we briefly
mention three concrete applications in the following. These will
also serve as a plausibility check when giving the formal defini-
tions of our objective functions. Furthermore, the examples imme-
diately suggest natural extensions of the model, some of which will
be discussed in Section 1.2.4 below.

Example 1. A chemical manufacturing plant produces various
chemicals (=products), each consisting of a specific set of constit-
uents (=parts). The constituents are supplied to the mixing and
reaction stage through a number of supply pipes (=machines).
Whenever a constituent on a supply pipe changes during the
production, this incurs costs to retool and clean the pipe.

Example 2. A pharmaceutical packaging facility bundles together
different types of pills (=parts) into patient or region specific boxes
(=products). The pills are stored in containers that can be hooked to
the feeding holes (=machines) of the packaging unit. Costs are
incurred by the manpower necessary to exchange the containers,
possibly interrupting the whole production.

The last example shows that our model also captures a set of
applications that are phrased in an entirely different language.

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.11.011

1 This work was performed as a research project in cooperation with Supercom-
puting Systems AG, Zürich, Switzerland.

E-mail address: torsten.muetze@inf.ethz.ch

European Journal of Operational Research 236 (2014) 37–50

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.11.011&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.11.011
mailto:torsten.muetze@inf.ethz.ch
http://dx.doi.org/10.1016/j.ejor.2013.11.011
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

Example 3. An insurance company has a number of employees
(=parts) who use the company cars (=machines) for their field
work. Work is organized in hourly timeslots, and during each
timeslot, only a subset of employees (=products) needs a company
car. Costs are incurred by the time losses and inconveniences
caused whenever two different employees are assigned the same
car in directly subsequent time slots (one has to prematurely hurry
back for the exchange), and also whenever the same employee has
to switch and adapt to a different car.

The main contribution of this work are simple and efficient
algorithms for the optimization problems arising from the above-
mentioned scenarios. We also provide hardness results to identify
problems where such algorithms most likely do not exist. We hope
to address those hard problems (which are important for some of
the mentioned applications) in future work, by providing approxi-
mation algorithms with provable guarantees.

1.1. Formal problem definition

Before stating our results, we give a formal definition of the
problem outlined above.

Products and machines. For any two integers r and s with r 6 s
we define ½r; s� :¼ fr; r þ 1; . . . ; sg and ½r� :¼ ½1; r� ¼ f1;2; . . . ; rg.

A production is a pair ð½n�; PÞ, where n is an integer and
P ¼ ðP1; . . . ; P‘Þ is a sequence of non-empty subsets of ½n�, such thatS

i2½‘�Pi ¼ ½n� (or equivalently, for every p 2 ½n� there is some i 2 ½‘�
with p 2 Pi). As before, we refer to each of the sets Pi as a product,
and to the elements of Pi as the parts of product Pi (these terms will
often be used in informal discussions). Clearly, the requirement
that each part appears in at least one product is just a natural
way to exclude artificial complications. As before we use m to
denote the number of machines.

Schedules. A schedule for a production ð½n�; PÞ; P ¼ ðP1; . . . ; P‘Þ, on
m machines is an ‘�m matrix r with values from ½n� [feg (e is a
symbolic placeholder) with the property that for every i 2 ½‘� every
element of Pi occurs exactly once in the ith row of r (so the ith row
contains exactly m� jPij values equal to e). The interpretation of an
entry ði; jÞ with rði; jÞ ¼ p 2 Pi is that when producing product Pi

the part p is assigned to machine j, and rði; jÞ ¼ e means that when
producing product Pi machine j is idle. We use R ¼ Rð½n�; P;mÞ to
denote the set of all schedules for the production ð½n�; PÞ on m
machines.

Clearly, a necessary (and sufficient) condition for the existence
of a schedule for a given production ð½n�; PÞ; P ¼ ðP1; . . . ; P‘Þ, on m
machines is that m P maxi2½‘�jPij.

Objective functions. We now define four objective functions that
measure the ‘disorder’ of a schedule. The reader is invited to check
that each of the objectives is meaningful for some or all of the pre-
viously mentioned applications (not all objectives are relevant for
all examples, and often some objectives are more important than

others). For the reader’s convenience, the following definitions
are illustrated in Fig. 1.

For a production ð½n�; PÞ and integer m, a changeover in a schedule
r 2 Rð½n�; P;mÞ is a triple ði1; i2; jÞ with i1 < i2;rði1; jÞ ¼: p 2 ½n�;
rði2; jÞ ¼: q 2 ½n�; p – q, and rði; jÞ ¼ e for all i1 < i < i2. We denote
the number of changeovers in r by NchangeðrÞ.

In many applications (cf. the above examples), a changeover
ði1; i2; jÞ gets more relevant/more costly, if the difference i2 � i1 gets
smaller (think of i2 � i1 as the available time in which the change-
over has to be performed). In this work we distinguish changeovers
ði1; i2; jÞ with i2 � i1 ¼ 1, which we call critical, from changeovers
with i2 � i1 P 2 (those are not critical). We denote the number of
critical changeovers in r by NcritðrÞ.

A critical changeover on one machine may delay or interrupt
the production on all m machines (as in Examples 1 and 2 above,
but not in Example 3). A stop in a schedule r 2 Rð½n�; P;mÞ is an in-
dex i 2 ½2; ‘� for which there exists a critical changeover
ði� 1; i; jÞ; j 2 ½m�. Note that a single stop can be caused by several
critical changeovers between rows i� 1 and i. We denote the num-
ber of stops in r by NstopðrÞ.

A move in a schedule r 2 Rð½n�; P;mÞ is a quadruple ði1; j1; i2; j2Þ
with i1 < i2; j1 – j2;rði1; j1Þ ¼ rði2; j2Þ ¼: p 2 ½n� and p R Pi for all
i1 < i < i2. We denote the number of moves in r by NmoveðrÞ.

For the four above-mentioned quantities we define the minimal
number of changeovers, the minimal number of critical changeovers,
the minimal number of stops and the minimal number of moves, by
setting for � 2 fchange; crit; stop;moveg (� is used as a variable
representing each of the four cases)

Nmin
� ¼ Nmin

� ð½n�; P;mÞ :¼ min
r2Rð½n�;P;mÞ

N�ðrÞ; ð1Þ

respectively. Later we will also consider combinations of these opti-
mization goals. We remark here that minimizing the number of
stops is equivalent to makespan minimization (assuming that every
stop takes the same amount of time).

Clearly, for m P n changeovers, stops and moves can be avoided
completely (we may choose a different machine for each part, and
assign all occurrences of a part to the corresponding machine). We
are therefore only interested in the case m < n in the following.

1.2. Our results

We are now ready to state our results.

1.2.1. Minimizing changeovers

Theorem 4. There is an algorithm which computes, for any production
ð½n�; PÞ; P ¼ ðP1; . . . ; P‘Þ, and any integer m with maxi2½‘�jPij 6 m < n,

the minimal number of changeovers Nmin
change as defined in (1) and a

schedule r 2 Rð½n�; P;mÞ with NchangeðrÞ ¼ Nmin
change in time Oð‘ �mÞ.

Note that the required bounds on m in Theorem 4 are only
included to avoid trivial cases as mentioned in Section 1.1.

In many applications, e.g. if m is constant, every jPij is a positive
fraction of m (recall that the Pi are all non-empty), and then the
size of the input satisfies

P
i2½‘�jPij ¼ Hð‘ �mÞ. In those cases, the

claimed running time is therefore best possible. Note also that if
we wish to output the computed optimal schedule r as an entire
‘�m matrix, then already this requires time Hð‘ �mÞ, and the
given runtime bound is best possible. Nevertheless, if the input is
sparse, i.e.,

P
i2½‘� jPij ¼ oð‘ �mÞ, and if we either decide to output

an optimal schedule r in sparse form (e.g., by returning for every
i 2 ½‘� and every p 2 Pi the machine to which p is assigned) or

restrict ourselves to computing only the integer Nmin
change and no

Fig. 1. The various objective functions for a schedule r for a production with ‘ ¼ 5
products and n ¼ 5 parts on m ¼ 3 machines. The schedule r has NchangeðrÞ ¼ 5
changeovers (left hand side of the figure), NcritðrÞ ¼ 4 critical changeovers,
NstopðrÞ ¼ 3 stops (middle; stops are indicated by horizontal dotted lines) and
NmoveðrÞ ¼ 3 moves (right). The entries of r with value e are represented by empty
boxes.

38 T. Mütze / European Journal of Operational Research 236 (2014) 37–50

Download English Version:

https://daneshyari.com/en/article/6897482

Download Persian Version:

https://daneshyari.com/article/6897482

Daneshyari.com

https://daneshyari.com/en/article/6897482
https://daneshyari.com/article/6897482
https://daneshyari.com

