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a b s t r a c t

We consider two linear project time–cost tradeoff problems with multiple milestones. Unless a milestone
is completed on time, penalty costs for tardiness may be imposed. However, these penalty costs can be
avoided by compressing the processing times of certain jobs that require additional resources or costs.
Our model describes these penalty costs as the total weighted number of tardy milestone. The first prob-
lem tries to minimize the total weighted number of tardy milestones within the budget for total com-
pression costs, while the second problem tries to minimize the total weighted number of tardy
milestones plus total compression costs. We develop a linear programming formulation for the case with
a fixed number of milestones. For the case with an arbitrary number of milestones, we show that under
completely ordered jobs, the first problem is NP-hard in the ordinary sense while the second problem is
polynomially solvable.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The time–cost tradeoff problem (TCTP) assumes that processing
times can be compressed through the expenditure of additional re-
sources such as labor and capital (Ford & Fulkerson, 1962; Kelley,
1961). Its typical objective is to minimize the project completion
time subject to a constraint on total costs or to minimize total costs
subject to a constraint on project completion time.

The linear TCTP (LTCTP) is defined as a TCTP where the set of
possible processing times is a closed interval and compression cost
decreases linearly on the closed interval. The discrete TCTP (DTCTP)
is defined as a TCTP with the discrete set of possible processing
times. The LTCTP can be formulated as a linear programming (LP)
problem. Furthermore, it can be solved efficiently with a network
flow approach (Fulkerson, 1961; Kelley, 1961). However, the
DTCTP is strongly NP-hard (De, Dunne, Ghosh, & Wells, 1997).
Thus, for the DTCTP, Skutella (1998) developed approximation
algorithms with a constant performance guarantee for various spe-
cial cases. For a comprehensive review of the more general model
(e.g., (multi-mode) resource-constrained project scheduling), see
(Artigues, Demassey, & Neron, 2008; Brucker, Drexl, Möhring,
Neumann, & Pesch, 1999; Demeulemeester & Herroelen, 2002;
Weglarz, 1999; Weglarz, Jozefowska, Mika, & Waligora, 2011).

The TCTP research above assumes one milestone for the overall
project, that is, the last job. In reality, however, milestones can ex-
ist at any point in the project. For example, a venture capital com-
pany makes small investments in a project at first and then, when a
milestone has been reached, determines whether to stop the pro-
ject or make more investments (Bell, 2000; Sahlman, 1994). To
the best of our knowledge, no study has been conducted on an
LTCTP with more than one milestone.

This paper considers two LTCTPs with multiple milestones such
that penalty costs occur unless each milestone is reached no later
than its due date. The first problem tries to minimize the total
weighted number of tardy milestones within the budget for total
compression costs, while the second problem tries to minimize
the total weighted number of tardy milestones plus total compres-
sion costs. Let the first and second problems be referred to as LTCTP
1 and LTCTP 2, respectively.

Our problems can be formally stated as follows. The LTCTP is
represented by a directed activity-on-node graph G ¼ ðV ;AÞ, where
V ¼ f1;2; . . . ;ng is the set of jobs and A is the set of precedence
relations. Relation ði; jÞ 2 A means that job i should be completed
before job j is started. Associated with job j is a normal processing
time pj, a maximal compression amount uj, and a compression cost
rate cj, j ¼ 1;2; . . . ;n. Let x ¼ ðx1; x2; . . . ; xnÞ be the vector, where xj

is the compressed amount of job j and 0 6 xj 6 uj; j ¼ 1;2; . . . ;n.
Note that throughout the paper, without loss of generality, we will
consider only schedules such that each job is processed as soon as
possible by not allowing unnecessary idle time. Thus, since each
job has a unique starting time under each x, let x be termed
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schedule in this paper. Let D # V be the set of milestones. Note that
each milestone corresponds to a specific job. For j 2 D, let wj and dj

be the penalty cost for tardiness and the due date of milestone j,
respectively. Let CkðxÞ be the completion time of job k under x.
Then, throughout this paper, LTCTP 1 and LTCTP 2 are defined,
respectively, as

minimize
X

j2TðxÞ
wj

subject to CiðxÞ þ pj � xj 6 CjðxÞ; 8ði; jÞ 2 A;Xn

j¼1

cjxj 6 B

0 6 xj 6 uj; j ¼ 1;2; . . . ;n;

and

minimize
X

j2TðxÞ
wj þ

Xn

j¼1

cjxj

subject to CiðxÞ þ pj � xj 6 CjðxÞ; 8ði; jÞ 2 A;

0 6 xj 6 uj; j ¼ 1;2; . . . ;n;

where TðxÞ ¼ fjjCjðxÞ > djforj 2 Dg is the set of tardy milestones in D
under x and B is the budget for total compression costs. Let mile-
stone g be referred to as a just-in-time (JIT) job under x if completed
exactly on its due date under x, that is, dg ¼ CgðxÞ.

Proposition 1. LTCTP 1 and LTCTP 2 with a fixed number of
milestones are polynomially solvable.

Proof. Suppose that D is the set of milestones which are com-
pleted no later than their due dates in a feasible schedule. For given
D, LTCTP 1 and LTCTP 2 can be formulated as an LP below.

minimize
X

j2DnD

wj

subject to CiðxÞ þ pj � xj 6 CjðxÞ; 8ði; jÞ 2 A;

CjðxÞ 6 dj; 8j 2 DXn

j¼1

cjxj 6 B

0 6 xj 6 uj; j ¼ 1;2; . . . ;n;

and

minimize
X

j2DnD

wj þ
Xn

j¼1

cjxj

subject to CiðxÞ þ pj � xj 6 CjðxÞ; 8ði; jÞ 2 A;

CjðxÞ 6 dj; 8j 2 D

0 6 xj 6 uj; j ¼ 1;2; . . . ;n

Note that since the objective value in LTCTP 1 is a constant, our
concern is to find a feasible schedule. It is observed that if the set of
the milestones completed before the due dates is known in
advance, then LTCTP 1 and LTCTP 2 can be formulated as an LP.
Since the number of the milestones is fixed, this implies that opti-
mal schedules of the two problems can be found by solving Oð2jDjÞ
LP’s, where jDj is the cardinality of D. The proof is complete. h

By Proposition 1, hereafter, we consider the case with an arbi-
trary number of milestones. Furthermore, in this paper, we focus
on the LTCTP with a chain precedence graph (LTCTP-Chain) as
starting point the LTCTP with multiple milestones. The motivation
of LTCTP-Chain is found in a product development process consist-
ing of sequential stages (Roemer & Ahmadi, 2004). Throughout the
paper, assume that a chain precedence graph is described below:

1! 2! � � � ! n;

where i! j represents that job j can start after job i is completed.
Without loss of generality, assume that 1 and n are the start and
the end jobs, respectively. Let LTCTP 1 and LTCTP 2 with a chain pre-
cedence graph be referred to as LTCTP-Chain 1 and LTCTP-Chain 2,
respectively.

The remainder of the paper is organized as follows. Section 2
shows that LTCTP-Chain 1 with an arbitrary number of milestones
is NP-hard. It also presents a pseudo-polynomial time approach for
LTCTP-Chain 1 with an arbitrary number of milestones. Section 3
shows that LTCTP-Chain 2 with an arbitrary number of milestones
is polynomially solvable. The final section presents concluding re-
marks and discusses future work.

2. LTCTP 1 with an arbitrary number of milestones under
completely ordered jobs

In this section, we establish the computational complexity of
LTCTP-Chain 1, and develop its pseudo-polynomial time approach.

We can transform LTCTP-Chain 1 with D � V into the LTCTP-
Chain 1 with D ¼ V by letting di ¼

Pn
j¼1pj for i 2 V n D. It is clear

that optimal schedules of this two problems are identical, since
jobs i for i 2 V n D will not be completed tardily. Thus, for simplicity
of notations, we assume that D ¼ V .

2.1. Computational complexity of LTCTP-Chain 1

In this section, we show that the decision version of LTCTP-
Chain 1 is NP-complete by the reduction from the partition prob-
lem, which is known to be NP-complete, see (Garey & Johnson,
1979). The partition problem can be stated as follows: Given n po-
sitive integers a1; a2; . . . ; an such that

Pn
j¼1aj ¼ A, is there a subset

I � f1;2; . . . ;ng such that
P

j2Iaj ¼ A
2?

Theorem 1. The decision version of LTCTP-Chain 1 is NP-complete.

Proof. The decision version of LTCTP-Chain 1 is denoted as fol-
lows: Given a threshold K, is there a schedule x such that x satisfies
the precedence relations and

X
j2TðxÞ

wj 6 K and
Xn

j¼1

cjxj 6 B?

It is clear that decision version of LTCTP-Chain 1 is in NP. Hence-
forth, we will reduce the partition problem to the decision version
of LTCTP-Chain 1. Given an instance of the partition problem, we
construct an instance of LTCTP-Chain 1 as follows. There are n jobs
such that for k ¼ 1;2; . . . ; n, let pk ¼ Mk;wk ¼ 2ak; ck ¼ ak

Mk and
uk ¼ Mk, where M > 2ðnþ 1ÞA. Let D ¼ f1;2; . . . ;ng, which implies
that all jobs have the dates of appraisal. Let d1 ¼ 0 and
dk ¼

Pk�1
j¼1 Mj; k ¼ 2;3; . . . ;n. Let K ¼ A and B ¼ A

2.
Suppose that there exists a set I such thatP

i2Iaj ¼
P

i2f1;2;...;ngnIaj ¼ A
2. We can construct a schedule �x by

letting �xj ¼ Mj if j 2 I while �xj ¼ 0, otherwise. Note that since

�xk ¼ Mk for k 2 I,

Ckð�xÞ ¼
Xk

j¼1

ðpj � �xjÞ 6
Xk�1

j¼1

Mj ¼ dk;

and thus jobs in I are non-tardy, while since �xk ¼ 0 for
k 2 f1;2; . . . ;ng n I,

Ckð�xÞ ¼
Xk

j¼1

ðpj � �xjÞP Mk >
Xk�1

j¼1

Mj ¼ dk;

62 B.-C. Choi, J. Chung / European Journal of Operational Research 236 (2014) 61–68



Download English Version:

https://daneshyari.com/en/article/6897484

Download Persian Version:

https://daneshyari.com/article/6897484

Daneshyari.com

https://daneshyari.com/en/article/6897484
https://daneshyari.com/article/6897484
https://daneshyari.com

