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a b s t r a c t

Fitness landscape theory is a mathematical framework for numerical analysis of search algorithms on
combinatorial optimization problems. We study a representation of fitness landscape as a weighted
directed graph. We consider out forest and in forest structures in this graph and establish important rela-
tionships among the forest structures of a directed graph, the spectral properties of the Laplacian matri-
ces, and the numbers of local optima of the landscape. These relationships provide a new approach for
computing the numbers of local optima for various problem instances and neighborhood structures.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Combinatorial optimization is beneficial for minimizing trans-
portation costs of different goods, finding protein folding struc-
tures having minimal energy, determining the best topology for a
wireless network, or designing microprocessors to minimize the
communication costs among individual transistors (Pardalos, Du,
& Graham, 2013). Computational complexity is a common feature
of many combinatorial optimization problems (e.g., the traveling
salesman problem and the quadratic assignment problem are
NP-hard). Another typical feature is a large size of the solution
space for even problems of moderate size. For d-partite graph
matching or the multidimensional assignment problem, for exam-
ple, the number of feasible solutions grows exponentially in both
dimensionality d and cardinality n of the problem.

Computational complexity and very large solution space make
application of exact solution techniques restrictively slow or even
infeasible for such problems. So, rather than obtaining globally
optimal solution, the task is simplified to finding good quality
approximate solutions. Search based methods, including iterative
and stochastic local searches (Hirsch, Pardalos, & Resende, 2010;
Hoos & Stützle, 2005; Stützle, 2006), simulated annealing
(Kirkpatrick, Gelatt, & Vecchi, 1983; Pedamallu & Ozdamar,
2008), and genetic algorithm (Gonçalves, Mendes, & Resende,
2008; Holland, 1975), are widely utilized for finding approximate
solutions of discrete and combinatorial optimization problems
(Hvattum & Glover, 2009). A neighborhood of a given solution is

a key concept in search algorithms. It is through the notion of
neighborhood that the distance between two solutions, as well as
the local optima (minima and maxima) are defined.

Fitness landscape theory is an important subfield of combinato-
rial optimization. It provides a framework for analysis of the search
algorithm’s behavior on different instances of a given problem
(Krokhmal & Pardalos, 2009; Stadler, 2002). In addition to combi-
natorial optimization, fitness landscape analysis found application
in the physics of disordered systems and evolutionary biology
(Reidys & Stadler, 2002). As a matter of fact, fitness landscapes
originated in theoretical biology as a way of visualizing evolution-
ary adaptation (Wright, 1932). Later, they appeared in analysis of
spin glasses and other models of disordered physical systems (Bin-
der & Young, 1986). Reidys and Stadler (2002) also acknowledge
the similarity between fitness landscapes and the potential energy
surfaces used to study the folding of biopolymers (e.g.,
nucleic acids and proteins) in theoretical chemistry (Mezey,
1987; Neumaier, 1997).

Combinatorial landscapes are not unlike their earth counter-
parts. If solutions are thought as places, and a solution’s fitness
(i.e., objective value) as an altitude, then local minima and maxima
are like depths and peaks. Just like a walk is long if two places are
far apart, the search algorithm’s run time is long when the distance
between initial solution and resulting local optimum is large. Sim-
ilarly to difficulties encountered traversing a rugged terrain, search
algorithms are challenged by combinatorial landscapes with many
local optima.

As a result, a number of fitness landscape studies examine the
trends in the numbers of local optima for various problem sizes,
neighborhoods, and distributions of coefficients. Other studies look
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at the relationship between solution’s fitness and its distance to
the optima. It is widely acknowledged that careful analysis of com-
binatorial landscapes is a key to a deeper understanding of the
behavior of the search based algorithms (Schiavinotto & Stützle,
2007).

Many important results and methodologies for fitness
landscape analysis are reviewed in Reidys and Stadler (2002) and
Stadler (2002). Combinatorial landscapes can be examined through
a wide variety of perspectives, including probability theory and
stochastic processes, dynamical systems, random graphs, and
abstract algebra. In the majority of the literature on fitness
landscapes, graph representations of landscapes and the respective
discrete Laplacian operators (or graph Laplacians) arise in the con-
text of undirected graphs. Undirected graphs assume the presence
of edges in both directions, and so, they lead to symmetric graph
Laplacians.

We argue that landscape representations via undirected graphs
ignore or lose important information on which of the two solutions
(edge endpoints) has a better fitness value. Yet, the theory of direc-
ted graphs (digraphs) is not nearly as well developed as for undi-
rected graphs. Some key results in undirected graph theory do
not hold for directed graphs and need to be extended for digraphs.
Fortunately, a well-known algebraic result connecting the number
of weak components with the multiplicities of undirected graph
Laplacians was extended to digraphs in Agaev and Chebotarev
(2005). It was shown that converging trees in a digraph form a
directed forest known as in forest, and this structure serves as a
digraph analog of an undirected graph’s decomposition into weak
components.

Here we extend this important result to alternative types of
directed forests and their components (specifically, out forests
and diverging trees). The main contribution of the paper is the
fitness landscape representation via directed graph and the impor-
tant connections between local optima on landscapes and certain
nodes on directed trees. The connection between landscapes’
optima and directed trees is visualized in Fig. 1, which serves as
a graphical abstract.

The paper is organized as follows. The key concepts related to
fitness landscapes and forest structures on directed graphs are
introduced in Section 2. These definitions are used to obtain
general results on digraphs and landscapes in Section 3. Finally,
Section 4 presents the conclusions.

2. Notation

2.1. Combinatorial landscapes

Fitness landscape analysis is an important tool in combinatorial
optimization. A search algorithm imposes a structure on the space
of all feasible solutions. Landscapes theory studies how the
imposed structure impacts the behavior and performance of the
algorithm. To define a fitness landscape, we first introduce several
related concepts, starting with a notion of a neighborhood of a
given solution.

In this paper, we follow the terminology of (Schiavinotto &
Stützle, 2007; Stadler, 2002). Suppose that P is a combinatorial
optimization problem (e.g., the quadratic assignment problem or
the traveling salesman problem). Let P be a specific instance of P,
in other words P 2 P. Denote by SP the set of all feasible
solutions of instance P. Then 2SP represents the space of all subsets
of set SP .

A neighborhood is a mapping N : SP ! 2SP that assigns to each
solution s 2 SP its subset NðsÞ 2 2SP of solutions, called neighbors.

Usually, it is assumed that s R NðsÞ. For a neighborhood to be
useful in search landscape analysis, the way a mapping N is
defined must correspond to the ‘‘look around’’ step the search algo-
rithm makes as it moves through the solution set SP . Hence, a
neighborhood should be defined through an operator that
describes all allowable moves for a single step of the algorithm.

An operator D is a set of the operator functions d : SP ! SP that
satisfy

s0 2 NðsÞ if and only if 9d 2 D such that s0 ¼ dðsÞ:

To ensure that s R NðsÞ, it is usually assumed that dðsÞ–s for all
s 2 SP . The application of some operator function d 2 D is called a
move.

A distance between two solutions is another key concept closely
related to the ideas of a neighborhood, an operator, and a move.
When the algorithm moves from one solution to another in search
for optimal solutions, it crosses multiple neighborhoods via succes-
sive application of a sequence of moves. In other words, given any
two solutions s; t 2 SP , the search starting in s will arrive in t if and
only if 9fd1; . . . ; dkg � D such that t ¼ dkð. . . ðd1ðsÞÞ . . .Þ. Notice that
the number of neighborhoods crossed by applying the above
sequence of moves is k. Clearly, alternative ways to move from
one solution to another might exist. In such case, the number of
neighborhoods the search crosses on its way from s to t might vary.
The smallest possible number defines a distance between s and t.

Typically, the neighborhood N is defined in such a way that
s1 2 Nðs2Þ () s2 2 Nðs1Þ (i.e., it is commutative). As a result, we
can get from t to s by simply reversing the sequence of moves,
and so, the distance from t to s is the same as the distance from s
to t. Thus, to guarantee that the distance is symmetric, the consid-
ered neighborhood must be commutative.

Suppose that N is, in fact, commutative. Then a distance
between solutions of P can be formally defined as follows.

Given an operator D, a distance between two solutions s; t 2 SP

is the minimum number of moves d 2 D needed to reach s from t
or t from s, i.e.,

dðs; tÞ ¼minfk : t ¼ dkð. . . ðd1ðsÞÞ . . .Þ or s ¼ d1ð. . . ðdkðtÞÞ . . .Þ; di
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The neighborhood together with the corresponding operator
and distance impose a certain structure on the solution space. A fit-
ness landscape (sometimes also referred as combinatorial or search
landscape) adorns the solution space structure of a problem
instance P established by the choice of neighborhood N with the
objective (or fitness) function f : SP ! R of P.Fig. 1. Graphical abstract.
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