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a b s t r a c t

We consider a network design problem that generalizes the hop and diameter constrained Steiner tree
problem as follows: Given an edge-weighted undirected graph with two disjoint subsets representing
roots and terminals, find a minimum-weight subtree that spans all the roots and terminals so that the
number of hops between each relevant node and an arbitrary root does not exceed a given hop limit H.
The set of relevant nodes may be equal to the set of terminals, or to the union of terminals and root nodes.
This article proposes integer linear programming models utilizing one layered graph for each root node.
Different possibilities to relate solutions on each of the layered graphs as well as additional strengthening
inequalities are then discussed. Furthermore, theoretical comparisons between these models and to pre-
viously proposed flow- and path-based formulations are given. To solve the problem to optimality, we
implement branch-and-cut algorithms for the layered graph formulations. Our computational study
shows their clear advantages over previously existing approaches.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quality-of-service aspects are among the major issues when
designing modern telecommunication networks and in particular
bounding the maximum overall delay of each relevant communi-
cation path is important. It is widely accepted that in many appli-
cations the delay along some connection mainly depends on the
number of intermediate routers, i.e., hops, and that restricting
the maximum length of each established path by some predefined
threshold limits the probability of failures (see, e.g., Dahl, Gouveia,
& Requejo, 2006; Salama, Reeves, & Viniotis, 1996). Furthermore,
whenever redundancy is not of major importance it is usually de-
sired that the final network has tree structure in order to ensure
unique communication paths and to reduce the maintenance ef-
fort, cf. Salama (1996) and Salama et al. (1996).

The literature contains many works dedicated to two problems
that fit into this framework, namely the ‘‘centralized’’ hop-
constrained minimum spanning/Steiner tree problem (HMSTP/
HMStTP), see, e.g., Dahl et al. (2006), Gouveia (1995), Gouveia
and Requejo (2001), Gouveia, Paias, and Sharma (2011), Gouveia,

Simonetti, and Uchoa (2011), and Voß (1999) and the references
therein, and the ‘‘decentralized’’ diameter-constrained minimum
spanning/Steiner tree problem (DMSTP/DMStTP), see, e.g., Achu-
than, Caccetta, Caccetta, and Geelen (1994), Gouveia and Magnanti
(2003), Gouveia, Magnanti, and Requejo (2004, 2006), Gouveia
et al. (2011), and Gruber (2009) and the references therein.

To define the HMSTP consider an undirected, edge-weighted
graph G ¼ ðV ; EÞ with node set V, edge set E, a hop limit H 2 N,
and one dedicated central node r 2 V . The objective is to identify
a minimum cost spanning tree such that the path between the
root r and any node v 2 V does consist of at most H edges. For
the Steiner variant (HMStTP) we are further given a set of termi-
nals T � V and the aim is to identify a minimum cost Steiner tree
connecting all terminals such that the path between the root r
and any terminal node t 2 T does consist of at most H edges. To
define the DMSTP consider, as before, an undirected, edge-
weighted graph. The objective is to identify a minimum cost
spanning tree such that the path between any two nodes does
consist of at most D edges, for some given diameter limit D 2 N.
Changes to the Steiner variant (DMStTP) are analogous to the
hop-constrained problems.

However, several other tree problems with hop constraints ap-
pear to be of practical interest and one objective of this work is to
propose a more general framework to contextualize these prob-
lems. In practice we may have multiple (e.g., replicated) central
servers in which case each server communicates with a subset of
terminals, and lengths of the corresponding communication paths
are limited. One of the important sparse mode multicast routing
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protocols is based on core-based trees (CBTs) (Ballardie, Francis, &
Crowcroft, 1993). In this protocol, a set of ‘‘core routers’’ is given,
and they all multicast the information to a set of other relevant
nodes (these correspond to receivers, that can be other routers or
even end users). In classical multicast routing, each core router
builds its own communication tree (also known as the source tree
architecture), connecting the core router with the group of its rele-
vant nodes. In the sparse mode multicast routing, however, it is re-
quired that the union of subtrees associated to the core routers
builds a single tree. In this latter concept, also known as the
shared-tree architecture, a common tree is built that connects all
core routers and their relevant nodes, cf. Gossain, de Morais
Cordeiro, and Carlos (2002), Salama (1996), and Salama et al.
(1996). CBTs offer better scalability when compared to the source
tree architecture and their main applications are for the Internet
Protocol Television (IPTV) and in Mobile Digital Video Broadcast-
ing-Handheld (DVB-H), see Minoli (2007). To ensure that the
communication delays are not too high and also to ensure a certain
reliability of the network, additional hop constraints may be
imposed along the communication paths, e.g., between each
server–receiver pair, cf. Dahl et al. (2006).

In this paper, we provide a new generic mathematical model for
the application described above. The problem is called the Hop
Constrained Minimum Steiner Tree Problem with Multiple Root nodes
(HSTPMR) problem. We are given an undirected graph G ¼ ðV ; EÞ,
with node set V, edge set E, edge costs ce P 0, for all e 2 E, and a
hop limit H 2 N. The node set V contains two disjoint subsets: root
nodes R; jRjP 1, and terminal nodes T # V n R. Furthermore, we are
given a set T 0 # T [ R of relevant nodes for which hop limits to all
root nodes need to be considered.

A solution to the HSTPMR is a Steiner tree G0 ¼ ðV 0; E0Þ spanning
all root and terminal nodes, i.e., R [ T # V 0, such that the hop con-
straints are met for all relevant nodes v 2 T 0. More precisely, for
each relevant node t 2 T 0 and each root r 2 R, the unique path be-
tween t and r can contain at most H edges. The objective is to find
a feasible subtree yielding minimum total edge costs. If T [ R ¼ V ,
the solution will be a spanning tree of G.

In this study we consider two particular cases of this new
framework which as far as we know have not been studied before
(with exception to the introductory work in Gouveia, Leitner, &
Ljubić (2012a)): (a) T 0 ¼ T [ R and (b) T 0 ¼ T. In the first case, delay
bounds between roots have to be taken into consideration (e.g.,
when roots model replica servers) and in the second case delays
between roots are not critical (e.g., when services by different pro-
viders are offered to terminals). An illustrative instance of the
HSTPMR with two roots and three terminals is given in Fig. 1a,
while Fig. 1b and c depict solutions to this instance for T 0 ¼ T [ R
and T 0 ¼ T , respectively, assuming that H ¼ 3. Notice that one
could generalize this problem even further by introducing subsets
of roots and hop limits that would depend on each node from T 0.

However, the two cases already present different characteristics
that strongly affect the corresponding models. For the case
T 0 ¼ T [ R, it is easy to see that the hop-constrained arborescences
associated to each root span the same set of nodes and the same set
of undirected edges. This property is useful to strengthen the mod-
els that will be proposed in the next subsection. Unfortunately, this
property may not be satisfied in the case T 0 ¼ T since the maximum
distance between any two roots may exceed H. In fact as can be de-
duced from Fig. 1c, the subtree obtained from undirecting the arcs
of the hop-constrained arborescence associated to root 0 does not
coincide with the subtree obtained from undirecting the arcs of the
hop-constrained arborescence associated to root 1. Thus, many of
the model enhancements valid for the case T 0 ¼ T [ R that we will
discuss below, will not be valid for T 0 ¼ T. The following results,
however, provide an upper bound on the maximum distance
between any two roots.

Lemma 1. Let G0 ¼ ðV 0; E0Þ be a feasible solution to an instance of the
HSTPMR with T 0 ¼ T and let dðu;vÞ denote the distance between two
nodes u;v 2 V 0 in G0. Then, the maximum distance between any pair of
root nodes in G0 does not exceed 2H � ‘ where ‘ is the maximum
distance between any two terminal nodes in G0, i.e.,
‘ ¼maxu;v2T dðu;vÞ.

Proof. If there is a single terminal, two roots can be each at dis-
tance H from it, which gives the maximum distance of 2H. Assume
that jTjP 2, let t1 and t2 be two terminals at maximum distance
and let P ¼ ðt1 ¼ v0;v1; . . . ;v ‘ ¼ t2Þ (v i 2 V 0 for 0 6 i 6 ‘, and
fv i;v iþ1g 2 E0 for 0 6 i 6 ‘� 1) denote the path between t1 and t2

in G0. Furthermore, let r 2 R be an arbitrary root and
v j 2 P;0 6 j 6 ‘, be the node from P such that the path between r
and v j is edge disjoint to P. Since, the maximum distance between
a terminal and a root node may not exceed H, we have

dðr;v jÞ 6
H � ‘þ j if j 6 ‘=2
H � j if j P ‘=2

�

Now let s 2 R be another root and vk 2 P;0 6 k 6 ‘ again be the
node from P such that the path between s and vk is edge disjoint
to P. Without loss of generality we assume that j 6 k. Then, by case
distinction it is easy to see that

dðr; sÞ ¼ dðr; v jÞ þ dðv j;vkÞ þ dðs;vkÞ 6 2H � ‘

holds and that this bound can be tight. h

The next corollary immediately follows from Lemma 1.

Corollary 1. Let diamðTÞ be the minimum diameter of a subtree of G
spanning all nodes from T. Then, for any feasible solution G0 ¼ ðV 0; E0Þ
to an instance of the HSTPMR on G with T 0 ¼ T the maximum distance
between any pair of root nodes in G0 does not exceed H0, where
H0 ¼ 2H � diamðTÞ.

Notice that H0 can be calculated in polynomial time: It suffices
to run breadth-first-search starting from each t 2 T until all
remaining terminals are reached. The subtree with the smallest
diameter obtained gives us the value of diamðTÞ. As we will show
in Section 3.4, this corollary allows us to provide modified models,
where many of the enhancements directly valid for the case
T 0 ¼ T [ R apply. The drawback is that these modified models use
many more variables and constraints than the original model with-
out the enhancements.

Our Contribution. In this paper, besides introducing the general
and new problem we present three kinds of results: (a) Complex-
ity: We analyze special cases in which the HSTPMR can be reduced
to previously studied network design problems, identify special
polynomial cases, show that the problem is NP-hard in general,
and that one cannot guarantee to find an approximation ratio bet-
ter than Hðlog jV jÞ unless P = NP. (b) Mixed integer programming
(MIP) models: We discuss layered graph reformulations, present
strengthening valid inequalities and show that the obtained mod-
els theoretically dominate flow- and path-based models studied in
Gouveia et al. (2012a). (c) Computational results: Branch-and-cut
algorithms are developed for layered graph models and computa-

Fig. 1. (a) An illustrative instance with R ¼ f0;1g, T ¼ f2;3;4g, and potential
Steiner nodes S ¼ f5;6;7g. (b) A feasible solution for T 0 ¼ T [ R and H ¼ 3. (c) A
feasible solution for T 0 ¼ T and H ¼ 3.
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