
Discrete Optimization

Genetic-algorithm-based simulation optimization considering a single
stochastic constraint

Shing Chih Tsai ⇑, Sheng Yang Fu
National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan

a r t i c l e i n f o

Article history:
Received 22 October 2012
Accepted 24 November 2013
Available online 4 December 2013

Keywords:
Metaheuristics
Genetic algorithm
Simulation
Simulation-based optimization
Feasibility determination

a b s t r a c t

In this paper, we consider the discrete optimization via simulation problem with a single stochastic con-
straint. We present two genetic-algorithm-based algorithms that adopt different sampling rules and
searching mechanisms, and thus deliver different statistical guarantees. The first algorithm offers global
convergence as the simulation effort goes to infinity. However, the algorithm’s finite-time efficiency may
be sacrificed to maintain this theoretically appealing property. We therefore propose the second heuristic
algorithm that can take advantage of the desirable mechanics of genetic algorithm, and might be better
able to find near-optimal solutions in a reasonable amount of time. Empirical studies are performed to
compare the efficiency of the proposed algorithms with other existing ones.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Optimization via simulation (OvS) is the process of optimizing
the expected performance of a discrete event, stochastic system
through computer simulation (e.g., Abo-Hamad & Arisha, 2013;
Arreola-Risa, Giménez-García, & Martínez-Parra, 2011; Chen,
2011; Hong & Nelson, 2009; Tsai, 2013; Tsai & Chu, 2012; Yu, Tsai,
& Huang, 2010). Hong and Nelson (2009) classified OvS problems
into three categories based on the feasible region structure: contin-
uous OvS, discrete OvS (DOvS), and ranking and selection (R&S).
For the R&S problems, the number of alternatives in the feasible re-
gion is so small (often less than 500) that we may simulate all solu-
tions and choose the best (or near the best) among them with a
specified confidence level (see Kim & Nelson (2006) for a survey).
For DOvS problems, we have a very large number of feasible solu-
tions (discrete design variables), and the existing algorithms often
emphasize a global convergence to the optimal solution asymptot-
ically. In practice, decision makers usually need to consider multi-
ple performance measures rather than a single one due to physical
or managerial requirements. For instance, in a typical flow-line
problem, the decision maker is interested in finding a buffer alloca-
tion setting to maximize the expected throughput over a fixed
planning horizon, while also keeping the expected overall work-
in-process no greater than a certain level. Recently, more research
interest in the OvS literature has been directed to solving problems
with stochastic constraints or multiple performance measures.

Morrice and Butler (2006) developed a R&S procedure based on
multi-attribute utility theory to allow tradeoffs between conflict-
ing targets. Kabirian and Ólafsson (2009) proposed a heuristic iter-
ative algorithm for finding the best solution in the presence of
multiple stochastic constraints. Kleijnen, van Beers, and van
Nieuwenhuyse (2010) combined methodologies from metamodeling
and mathematical programming for solving constrained optimiza-
tion of random simulation models. Bhatnagar, Hemachandra, and
Mishra (2011) and Szechtman and Yücesan (2008) proposed sto-
chastic approximation algorithms for constrained optimization
via simulation. Luo and Lim (2011) proposed a new approach that
converts a constrained optimization problem into an uncon-
strained one by using the Lagrangian function. Similarly, Park
and Kim (2011) presented a method called penalty function with
memory, which is added to the objective function and then re-
places a DOvS problem with stochastic constraints into a series of
new unconstrained problems. Vieira Junior, Kienitz, and Belderrain
(2011) proposed a novel simulation allocation rule to be used in a
locally convergent random search algorithm, called COMPASS
(Hong & Nelson, 2006), to handle stochastic constrained problems.
Hunter and Pasupathy (2013) and Pujowidianto, Hunter, Pasupathy,
Lee, and Chen (2012) applied a large-deviations approach to
provide an asymptotically optimal sample allocation that maxi-
mizes the rate at which the probability of false selection tends to
zero. These methods have a requirement that all the solutions be
simulated at least once, so they are more appropriate to the setting
where the solution space is finite and contains a small number of
elements. Andradóttir and Kim (2010) presented one type of R&S
procedure (called the Feasibility Determination Procedure, or
FDP) that checks the feasibility of each solution among a finite
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set with respect to a stochastic constraint. Instead of giving a guar-
antee of correctly choosing the best solution, Bayesian procedures
maximize the posterior probability of correct selection within a gi-
ven simulation budget. There are some works which developed
efficient Bayesian procedures to address the constrained optimiza-
tion problem (e.g., Guan, Song, Ho, & Zhao, 2006; Jia, 2009; Lee,
Pujowidianto, Li, Chen, & Yap, 2012; Li, Lee, & Ho, 2002). It should
be noted that the existing algorithms handling stochastic con-
straints are more appropriate to be used when the number of solu-
tion designs is not too large. This implies that they will become
inefficient (i.e., require excessive sampling cost) when applied to
a very large solution space.

Most commercial OvS solvers use optimization metaheuristics,
such as tabu search, neural nets, and genetic algorithms (GAs), that
have generally been designed and proven to be effective on diffi-
cult and deterministic optimization problems. While these algo-
rithms often find promising solutions quickly, they may also
become pure random search methods if the stochastic variation
of output (i.e., simulation noise) is high or the number of obtained
samples for each solution is set too low. That is, their implementa-
tions do not always adequately account for the presence of statis-
tical errors. In addition, these algorithms do not provide any
statistical guarantee regarding the quality or goodness of the final
selected solution. To handle the aforementioned issues, Boesel,
Nelson, and Kim (2003) proposed an adaptive genetic-algorithm-
based procedure to account for simulation noise in the stochastic
optimization context. Their procedure also guarantees to return
the best solution over the solutions visited by a heuristic search
procedure. Subsequently, Xu, Nelson, and Hong (2010) used the
niching GA together with COMPASS (Hong & Nelson, 2006) to
establish local optimality with statistical confidence when
simulating only a small portion of the feasible solutions. Nazzal,
Mollaghasemi, Hedlund, and Bozorgi (2012) proposed a simulation
optimization methodology that combines the GA and a R&S proce-
dure under common random number (CRN). They developed a new
R&S procedure to select a nonempty subset so that the best solu-
tion is contained in the subset with a pre-specified probability. Fit-
ness values and selective probabilities are then computed based on
the estimated performances which are obtained from the afore-
mentioned R&S procedure. Notice that these genetic-algorithm-
based procedures are adapted for solving the DOvS problem, but
can only optimize the expected value of a single performance mea-
sure (see Ólafsson (2006) for a review of metaheuristics for OvS).
To handle the multi-objective simulation optimization problem,
Lee, Chew, Teng, and Chen (2008) developed a solution framework
which integrates evolutionary algorithm with multi-objective
computing budget allocation method (MOCBA). They employed
MOCBA to efficiently allocate simulation replications to solutions
in the current population. The proposed approach is applied on a
multi-objective aircraft spare parts allocation problem to find a
set of non-dominated solutions. Horng, Lin, Lee, and Chen (2013)
used GA in combination with a surrogate model to find a set of
good solutions in the global search stage. In the second stage they
employed a probabilistic local search method to identify the
approximate local optima. In the final stage OCBA is used to obtain
the best solution among the promising ones identified previously.

In this paper, we propose two efficient algorithms (based on
GA) that are both theoretically robust and of practical value for
solving the DOvS problem with a single stochastic constraint. In
both proposed algorithms we use GA to guide the search process,
because it is a population-based algorithm that simultaneously
considers multiple candidate solutions and is shown to be more ro-
bust to stochastic noise (Xu et al., 2010). GA works with a popula-
tion of potential solutions and moves this population toward the
optimum iteratively. The terms iteration and generation are used
interchangeably in this work to refer to the process of transforming

one population of solutions to another. The proposed GA is adapted
to handle two performance measures with stochastic noise (i.e., a
stochastic objective and constraint) in a simulation environment.
Two types of R&S procedure are incorporated into our DOvS algo-
rithms to enhance its statistical efficiency and validity. We use FDP
(see Andradóttir & Kim (2010)) repeatedly in the proposed GA to
ensure that the candidate solutions in a population are feasible
with respect to the stochastic constraint (with some confidence).
See Appendix A.1 for the statistical guarantee provided by FDP.
At the end of the algorithms we also invoke the clean-up procedure
proposed in Boesel, Nelson, and Ishii (2003) to select the best with
respect to the stochastic objective from a set of potential solutions.
See Appendix A.2 for a detailed description of this clean-up proce-
dure. The first proposed DOvS algorithm guarantees global conver-
gence as the simulation effort goes to infinity (under the condition
that the picked solution is feasible), and also guarantees to choose
the best among all evaluated possibly feasible solutions with a
specified confidence level. Of course it is somewhat reassuring to
have convergence statements, in the sense that the algorithms will
eventually reach the global optimal when given large enough sim-
ulation effort. However, the algorithm’s finite-time efficiency may
be sacrificed to maintain this theoretically appealing property. Fur-
ther, this algorithm has to visit every solution infinitely often to
guarantee convergence, which is not very practically meaningful
especially when the sampling budget is limited. We therefore pro-
pose the second DOvS algorithm, which is more heuristic-oriented
and can take advantage of the desirable inherent properties of GA
(e.g., the adaptive constraint-handling techniques and the mecha-
nism of elite population, see Coello (2002)). The second algorithm
is designed to identify the best solution among the final elite pop-
ulation, and may deliver competitive performance in a reasonable
computation time.

The paper is organized as follows. In Section 2 we define the
DOvS problem with a single stochastic constraint, and introduce
the relevant notations and assumptions. Sections 3 and 4 present
two DOvS algorithms that adopt different sampling rules and
searching mechanisms, and thus provide different statistical
guarantees. We give a high-level review of the existing techniques
we incorporate, and a detailed description of only the most
critical enhancements. An empirical evaluation to compare
different algorithms is provided in Section 5, while the paper
ends with some concluding remarks in Section 6. The conver-
gence proof and some details of our algorithms are contained in
Appendix A.

2. Framework

Our goal is to select the solution with the largest or smallest ex-
pected performance (in terms of the stochastic objective) among a
large number of candidate solutions that satisfy a single stochastic
constraint. Let GjðxiÞ denote the jth simulation observation taken
from solution xi (associated with the objective performance mea-
sure), and let HjðxiÞ be the jth simulation observation taken from
solution xi (associated with the stochastic constraint). The ith solu-
tion xi is a vector of d integer decision variables in a feasible region
X, and is denoted by xi ¼ ðxi1; xi2; . . . ; xidÞ ¼ fxi‘; ‘ ¼ 1;2; . . . ; dg. The
expected performances with respect to the objective and the con-
straint are defined as gðxiÞ ¼ E½GjðxiÞ� and hðxiÞ ¼ E½HjðxiÞ� for
i ¼ 1;2; . . . ; k; j ¼ 1;2; . . ., respectively. A general formulation of
the constrained DOvS problem of interest is described as follows:

min
xi2X

gðxiÞ;

where the feasible region X is defined by the following stochastic
constraint:

hðxiÞP Q ;

114 S.C. Tsai, S.Y. Fu / European Journal of Operational Research 236 (2014) 113–125



Download English Version:

https://daneshyari.com/en/article/6897493

Download Persian Version:

https://daneshyari.com/article/6897493

Daneshyari.com

https://daneshyari.com/en/article/6897493
https://daneshyari.com/article/6897493
https://daneshyari.com

