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a b s t r a c t

In this paper, a new general scalarization technique for solving multiobjective optimization problems is
presented. After studying the properties of this formulation, two problems as special cases of this general
formula are considered. It is shown that some well-known methods such as the weighted sum method,
the �-constraint method, the Benson method, the hybrid method and the elastic �-constraint method can
be subsumed under these two problems. Then, considering approximate solutions, some relationships
between e-(weakly, properly) efficient points of a general (without any convexity assumption) multiob-
jective optimization problem and �-optimal solutions of the introduced scalarized problem are achieved.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

One part of mathematical programming is multiobjective opti-
mization programming when the conflicting objective functions
must be minimized over a feasible set of decisions. In many areas
in engineering, economics, and science new developments are only
possible by the application of multiobjective optimization prob-
lems (MOPs) and related methods. There are many recent publica-
tions on applications of MOPs (Ehrgott, Klamroth, & Schwehm,
2004; Hillermeier & Jahn, 2005; Hutterer & Jahn, 2003; Jahn,
2004; Steuer & Na, 2003), and many others. Various monographs
collected many results in theory and methodology (Ehrgott,
2000; Eichfelder, 2009; Ruzika & Wiecek, 2005), or provided a
comprehensive review of methods (Marler & Arora, 2003). For
solving MOPs, there are a number of methods and algorithms
which are classified according to participation of the decision ma-
ker in the solution process (Hwang & Masud, 1979). The traditional
and common approach for solving MOPs is a reformulation as a
parameter scalar optimization problem. In other words, they are
most commonly solved indirectly by using conventional (single-
objective) optimization techniques by the aid of scalarization. In
general, scalarization means the replacement of a vector optimiza-
tion problem by a suitable scalar optimization problem which is an
optimization problem with a real valued objective function. Since
the scalar optimization theory has been widely developed,
scalarization turns out to be of great importance for the vector

optimization theory, as it is done in the well known weighted
sum method (Geoffrion, 1968; Marler & Arora, 2010), the �-con-
straint method (Chankong & Haimes, 1983; Mavrotas, 2009), the
hybrid method (Guddat, Guerra, Tammer, & Wendler, 1985; Huang
& Yang, 2002), the Benson method (Benson, 1998), the normal
boundary intersection method (Das & Dennis, 1998), and so on.
For a survey on the scalarizing technique, the reader is referred
to Ehrgott and Wiecek (2005). Our focus in this paper is based on
the main idea of the elastic e-constraint method introduced by Ehr-
gott and Ruzika in Ehrgott and Ruzika (2008). Since the e-con-
straint method has no result about properly efficient solutions,
Ehrgott and Ruzika have presented two modifications of the e-con-
straint method to remedy this weakness. We use their strategy to
constitute a general form. We show that the weighted sum meth-
od, the �-constraint method, the Benson method, the hybrid meth-
od and the elastic �-constraint method can be seen as special cases
of our problem. Then, we prove some necessary and sufficient con-
ditions for (weakly, properly) efficient points of a general MOP via
optimal solutions of the presented scalarized problem. Researchers
have tried to present general formulations for multiobjective opti-
mization problems. For example, Luque, Ruiz, and Miettinen
(2011), Romero (2001) and Ruiz, Luque, and Miettinen (2012),
introduced a general formulation for several interactive methods.
Their general formulation can accomodate some well-known inter-
active methods. Our formulation in this paper is not for interactive
methods and so, is different from the formulation in Luque et al.
(2011) and Ruiz et al. (2012). It should be mentioned that there
exist several publications about properly efficient solutions
(Chankong & Haimes, 1983; Huang & Yang, 2002), and many
others, which use terms of stability of the scalarized problem or
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the K.K.T multipliers. However, our results on proper efficiency are
more direct.

On the other hand, the importance of approximation solutions
for MOPs in recent decades motivated us to investigate e-efficient
solutions. The first notion of approximation was suggested by
Kutateladze (1979) and extended by Loridan (1984). White
(1986) investigated six kinds of e-approximate efficient solutions.
Many authors studied the properties of this kind of solution. Some
necessary and sufficient conditions for e-(weak) efficiency can be
found in Dutta and Vetrivel (2001), Gutierrez, Jimenez, and Novo
(2006, 2007) and others. Engau and Wiecek (2007) investigated
scalarization approaches to generate e-efficient solutions of MOPs.
Since our presented problems are extensions of methods in Engau
and Wiecek (2007), the results in the current paper are extension
of those of special cases in Engau and Wiecek (2007). Also, one of
the most important notions in multiobjective optimization theory
is proper efficiency introduced by Li and Wang (1998). Liu (1999)
derived some necessary and sufficient conditions for e-proper
efficient solutions of convex MOPs. See also Beldiman, Panaitescu,
and Dogaru (2008), Gao, Yang, and Lee (2010), Gao, Yang, and Teo
(2011). The methods considered in Engau and Wiecek (2007) have
no result on e-proper efficiency. So, Ghaznavi and Khorram (2011)
and Ghaznavi, Khorram, and Soleimani-Damaneh (2012), using the
elastic e-constraint method, provided some necessary and suffi-
cient conditions for e-(weak, proper) efficiency. Since our problem
is a general form and the elastic e-constraint method is a special
case of that, the obtained results extend the results obtained in
Ghaznavi and Khorram (2011), Ghaznavi et al. (2012) and Engau
and Wiecek (2007). It is worth mentioning that the obtained
results are general and we do not assume any convexity
assumption.

The outline of this article is as follows: in Section 2, we provide
preliminaries and basic definitions. In Section 3, we present the
general formulation and study some properties of this formula.
In Sections 4 and 5, two problems are presented which are special
cases of the general formula presented in Section 3. Section 6 is
devoted to the necessary and sufficient conditions to obtain
e-(weakly, properly) efficient solutions in three subsections. The
conclusions are derived in Section 7.

2. Preliminaries and basic definitions

In this paper, optimization of the multiple objective problem is
studied as follows:

min f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fpðxÞÞ ð2:1Þ
giðxÞ 6 0; i ¼ 1;2; . . . ;m
hkðxÞ ¼ 0; k ¼ 1;2; . . . ; �m

where

fj; gi;hk : X � Rn ! R; 8j; i; k;

and X – ;. Here, we show all the feasible points by X. In other
words,

X ¼ fx 2 XjgiðxÞ 6 0;hkðxÞ ¼ 0;8i; kg:

Now, the following definitions are presented to determine efficient
solutions of the MOP.

Definition 2.1. A feasible solution x� 2 X of the MOP is called

(1) Efficient optimal solution if there does not exist another
x 2 X such that

fjðxÞ 6 fjðx�Þ for all j ¼ 1;2; . . . ;p and f ðxÞ– f ðx�Þ:

(2) Weakly efficient solution if there is no x 2 X such that

fjðxÞ < fjðx�Þ; j ¼ 1;2; . . . ;p:

(3) Strictly efficient solution if there does not exist another fea-
sible solution x – x� such that

fjðxÞ 6 fjðx�Þ; j ¼ 1;2; . . . ;p:

Let XEðXwE;XsEÞ be the set of efficient(weakly, strictly efficient)
solutions. If x� is an efficient (weakly efficient) solution, f ðx�Þ is
called a nondominated (weakly nondominated) point. The set of
nondominated (weakly nondominated) points is denoted by
YNðYwNÞ. In other words, YN :¼ f ðXEÞðYwN ¼ f ðXwEÞÞ.

We assume throughout this paper that Y ¼ f ðXÞ is bounded and
that XE is nonempty. This is guaranteed, e.g. if X is compact and fi

are continuous (see Ehrgott, 2000).
Throughout this paper, we use the following notations:

� Rp
> :¼ fy 2 Rpjyi > 0; i ¼ 1;2; . . . ; pg.

� Rp
P :¼ fy 2 Rpjyi P 0; i ¼ 1;2; . . . ; pg n f0g.

� Rp
P :¼ fy 2 Rpjyi P 0; i ¼ 1;2; . . . ; pg.

On the other hand, there exists a well-known kind of efficient
points which are named properly efficient solutions. Properly effi-
cient points are those efficient solutions that have bounded trade-
offs between the objectives. There are some definitions for proper
efficiency given by Benson (1979), Borwein (1977) and Hartley
(1978) and others. Here we use the definition of proper efficiency
in the sense of Geoffrion (1968).

Definition 2.2. A feasible solution x̂ 2 X is called properly efficient
in Geoffrions’s sense, if it is efficient and if there is a real number
M > 0 such that for all i and x 2 X satisfying fiðxÞ < fiðx̂Þ there exists
an index j such that fjðx̂Þ < fjðxÞ and

fiðx̂Þ � fiðxÞ
fjðxÞ � fjðx̂Þ

< M:

The set of properly efficient solutions is denoted by XpE.

e-(weakly) efficient solutions of MOP (2.1) are defined as
follows Loridan (1984):

Definition 2.3. Take into consideration MOP (2.1). Let e 2 R=. A
feasible point x̂ 2 X is called:

(1) e-Weakly efficient if there is no other x 2 X such that
f ðxÞ < f ðx̂Þ � e.

(2) e-Efficient if there is no other x 2 X such that f ðxÞ 6 f ðx̂Þ � e.

Definition 2.4 (Li and Wang, 1998). A feasible point x̂ 2 X is called
e-properly efficient point of problem (2.1), if it is e-efficient and
there is a real positive number M > 0 such that for all
i 2 f1;2; . . . ; pg and x 2 X satisfying fiðxÞ < fiðx̂Þ � ei, there exists
an index j 2 f1;2; . . . ; pg such that fjðx̂Þ � ej < fjðxÞ and

fiðx̂Þ � fiðxÞ � ei

fjðxÞ � fjðx̂Þ þ ej
< M:

The set of all e-weakly efficient, e-efficient and e-properly effi-
cient solutions of an MOP will be indicated by XeWE; XeE and XePE,
respectively. Notice that for e ¼ 0; e-weak efficiency, e-efficiency
and e-properly efficiency collapse in the usual definition of weak
efficiency, efficiency, (Definition 2.1) and properly efficiency (Def-
inition 2.2).

Remark 2.5. Obviously, XePE # XeE # XeWE.

The customary approach to solve a given MOP is to formulate a
single objective program (SOP) associated with it. Let us consider
an SOP as follows:
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