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a b s t r a c t

This paper is concerned with an algorithmic solution to the split common fixed point problem in Hilbert
spaces. Our method can be regarded as a variant of the ‘‘viscosity approximation method’’. Under very
classical assumptions, we establish a strong convergence theorem with regard to involved operators
belonging to the wide class of quasi-nonexpansive operators. In contrast with other related processes,
our algorithm does not require any estimate of some spectral radius. The technique of analysis developed
in this work is new and can be applied to many other fixed point iterations. Numerical experiments are
also performed with regard to an inverse heat problem.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper H1 and H2 are real Hilbert spaces
endowed with inner products and induced norms denoted by
h�; �i and j � j, respectively, while H refers to as any of these spaces.
The fixed point set of any self-mapping U on H is denoted by
FixðUÞ :¼ fx 2 H; Ux ¼ xg. The purpose of this work is to revisit
the numerical approach to a solution of the split common fixed point
problem (introduced in Censor & Segal (2009)), which is written

find x� 2 FixðTÞ such that Ax� 2 FixðSÞ; ð1:1Þ

where A : H1 ! H2 is a (nonzero) bounded linear operator,
T : H1 ! H1 and S : H2 !H2 are general operators. Our study will
be concerned with S and T belonging to the general class of quasi-
nonexpansive operators (EQ ), which includes commonly used clas-
ses such as firmly nonexpansive (EFN), nonexpansive (EN) and firmly
quasi-nonexpansive (or directed, EFQ ) operators; see Definition 1.1.
Note that the class EQ appears naturally when using subgradient
projection operator techniques in solving convexly constrained
problems (Yamada & Ogura, 2004; Yamada, Ogura, & Shirakawa,
2002; Yang & Zhao, 2006).

The above formalism provides an unified framework for the
study of many significant real-world problems. It is worth
underlining that (1.1) can be regarded as a generalization of the

so-called split feasibility problem (introduced in Censor & Elfving
(1994)):

find x� 2 Q 1 such that Ax� 2 Q2; ð1:2Þ

where Q1 and Q2 are convex subsets of H1 and H2, respectively.
Such models were successfully developed for instance in radiation
therapy treatment planning, sensor networks, resolution enhance-
ment and so on (Byrne, 2002; Censor, Bortfeld, Martin, & Trofimov,
2006; Censor, Chen, Combettes, Davidi, & Herman, 2011; Xu, 2010;
Yang, 2004). Note that (1.2) is nothing but the special instance of
(1.1) when taking T ¼ PQ1 and S ¼ PQ2 (the metric projections onto
Q1 and Q2, respectively); see, e.g., Takahashi (2000) for more details
on the metric projection. It can be also noticed that (1.1) encom-
passes other recently discussed inverse problems such as split vari-
ational inequalities (Censor, Gibali, & Reich, 2011) and split monotone
inclusions (Moudafi, 2011).

For convenience of the reader, we recall the definitions of quasi-
nonexpansive operators and other classes of operators often
encountered in fixed point theory.

Definition 1.1. Consider an operator U : H! H:

(d1) U belongs to EFN , the set of firmly nonexpansive mappings, if

8x; y 2 H; jUx� Uyj2 6 jx� yj2 � jðx� yÞ � ðUx� UyÞj2;

(d2) U belongs to EN , the set of nonexpansive mappings, if

8ðx; yÞ 2 H�H; jUx� Uyj 6 jx� yj;

(d3) U belongs to EFQ , the set of firmly quasi-nonexpansive (or
directed) mappings, if
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8ðx; qÞ 2 H � FixðUÞ; jUx� qj2 6 jx� qj2 � jx� Uxj2;

(d4) U belongs to EQ , the set of quasi-nonexpansive mappings, if

8ðx; qÞ 2 H � FixðUÞ; jUx� qj 6 jx� qj:

Remark 1.1. Clearly, we observe that EFN � EN � EQ and that
EFN � EFQ � EQ . It is also well-known that EFN includes resolvents
and projection operators, while EFQ contains subgradient projec-
tion operators (Bauschke & Combettes, 2001; Byrne, 2004; Yang
& Zhao, 2006).

Let us recall that (1.1) was investigated for directed operators
through the following algorithm (Censor & Segal, 2009):

xnþ1 ¼ T � ðI � lA�ðI � SÞAÞxn; ð1:3Þ

where l is some positive value and A� is the adjoint operator of A.
Clearly this iteration has been inspired from the ‘‘CQ algorithm’’
(Byrne, 2002, 2004), which is nothing but the special instance of
(1.3) when T ¼ PQ1 and S ¼ PQ2 are metric projections. This latter
algorithm was aimed at solving the split feasibility problem (1.2).
The convergence of (1.3) and that of the CQ algorithm were first
established in the finite dimensional setting, under the condition
that the step-size l satisfies

l2 0;
2
jA�Aj

� �
; where jA�Aj is the spectral radius of the operator A�A:

ð1:4Þ
Later on, further algorithmic solutions to (1.1), in general Hil-

bert spaces, were investigated for quasi-nonexpansive operators
(even for more general demicontractive operators) through
Mann-type variants of (1.3) (Moudafi, 2010, 2011). Only weak con-
vergence results are established under a similar condition to (1.4)
together with some classical demi-closedness property regarding
the involved operators.

Definition 1.2. Given an operator U : H ! H, we say that I � U is
demiclosed (Goebel & Kirk, 1990) if

ðzkÞ � H; zk * z weakly; ðI � UÞðzkÞ ! 0
strongly) z 2 FixðUÞ:

Remark 1.2. The demiclosedness property is well-known to be
satisfied for instance by certain continuous operators such as non-
expansive and more general strictly pseudocontractive ones
(Browder & Petryshyn, 1967; Marino & Xu, 2007), but also by (pos-
sibly discontinuous) operators, not nonexpansive, but quasi-non-
expansive (Maingé, 2008, Lemma 4.6).

Another approach to (1.1) was proposed in Byrne, Censor,
Gibali, and Reich (2011) with regard to firmly nonexpansive
operators S and T through the Halpern-type variant of algorithm
(1.3) given by

xnþ1 ¼ anx0 þ ð1� anÞ T � ðI � lA�ðI � SÞAÞð ÞðxnÞ; ð1:5Þ

where ðanÞ is a slowly vanishing sequence, that is ðanÞ � ð0;1�;
limn!1 an ¼ 0 and

P
nP0 an ¼ þ1. The strong convergence of the

iterations given by (1.5) was also established under the additional
requirement (1.4).

To solve (1.1) relative to quasi-nonexpansive mappings S and T,
Zhao and He have recently exploited a strategy similar to that used
in Maingé (2010) (for the fixed point problem), by introducing
relaxation parameters in their algorithm. More precisely, they pro-
posed and studied the following ‘‘viscosity-like’’ iteration (see Zhao
& He, 2012):

xnþ1 ¼ anCxn þ ð1� anÞUwn ðxnÞ; ð1:6Þ

where Uwn corresponds to a relaxed form of the operator
U ¼ T � ðI þ lA�ðS� IÞAÞ (namely Uwn ¼ ð1�wnÞI þwnU), l and
ðwnÞ being positive real numbers, C : H1 ! H1 is a strict contraction
and ðanÞ is a slowly vanishing sequence. The strong convergence of
(1.6) was obtained under the additional conditions on the
parameters:

l 2 0;
1
jA�Aj

� �
; 0 < lim inf

n!þ1
wn 6 lim sup

n!þ1
wn < 1=2: ð1:7Þ

Their results extend (to the split fixed point problem) that of
Maingé (2010) regarding the fixed point problem, namely the spe-
cial case when H1 ¼ H2 and S ¼ I (so that U reduces to T).

It turns out for convergence that all the above-mentioned
fixed-point methods are based upon the knowledge of the spec-
tral radius of the operator A�A. It is our purpose here to propose
an alternative approach to solving the common fixed point prob-
lem (1.1). More precisely, we prove a strong convergent result
regarding a variant of (1.6), under very classical conditions, to-
gether with a range of variable step-sizes that does not depend
on jA�Aj. An important particular case of our less restrictive strat-
egy is also considered, leading to Polyak-type algorithms (Polyak,
1987). Numerical experiments are also performed with regard to
an inverse heat equation.

Remark 1.3. Let us emphasize that the techniques of analysis
developed in this paper are different (regarding the asymptotic
convergence part) from that of Zhao and He (2012). In particular,
we implicitly extend the result of (at least) Maingé (2010) to the
following wider and natural range of relaxation parameter

0 < lim inf
n!þ1

wn 6 lim sup
n!þ1

wn < 1: ð1:8Þ

Our techniques of analysis can be also applied to algorithm (1.6) so
as to extend its related strong convergence result to the range of
parameter (1.8). However this is out of the scope of this paper
and we pay attention to a slightly different method.

2. Framework and proposed method

2.1. The involved operators

Let us recall (see Definition 1.1) that the class EQ of quasi-non-
expansive mappings includes the class EFQ of firmly quasi-nonex-
pansive mappings. However, as can be noticed from the
literature (related to (1.1)), the conditions on the parameters for
convergence of algorithms such as (1.6) are somewhat different,
when dealing either with element of EQ or with element of EFQ .
So, in order to state precise results regarding these two situations,
we will use the concept of demicontractive mappings (see, e.g.,
Hicks & Kubicek, 1977; Maingé & Maruster, 2011; Maruster,
1997; Moudafi, 2010).

Definition 2.1. An operator U : H! H is called g-demicontractive
(for some real value g 2 ð�1;1Þ) if, for any ðx; qÞ 2 H � FixðUÞ, it
satisfies

(d1) jUx� qj2 6 jx� qj2 þ gjx� Uxj2, or equivalently,
(d2) hx� Ux; x� qiP ð1=2Þð1� gÞjx� Uxj2.

Remark 2.1. The equivalence between the two inequalities in
Definition 2.1 can be seen from the following classical equality:

8ðu;vÞ 2H2; hu;vi¼�ð1=2Þju�v j2þð1=2Þjuj2þð1=2Þjvj2: ð2:1Þ
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