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a b s t r a c t

This paper considers line search optimization methods using a mathematical framework based on the
simple concept of a v-pattern and its properties. This framework provides theoretical guarantees on pre-
serving, in the localizing interval, a local optimum no worse than the starting point. Notably, the frame-
work can be applied to arbitrary unidimensional functions, including multimodal and infinitely valued
ones. Enhanced versions of the golden section, bisection and Brent’s methods are proposed and analyzed
within this framework: they inherit the improving local optimality guarantee. Under mild assumptions
the enhanced algorithms are proved to converge to a point in the solution set in a finite number of steps
or that all their accumulation points belong to the solution set.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

This work investigates the solution of the line search optimiza-
tion problem

minimize f ðaÞ ¼ Fðaþ adÞ
subject to 0 6 a 6 amax

ð1Þ

where a 2 R;amax is the upper bound for a; F : Rn # F # R is an
arbitrary function (including discontinuous function), f : R # R is
defined for a given point a 2 Rn and a non-null (usually descent)
direction d 2 Rn.

A solution of the line search problem (1) is typically used inside
a search direction optimization algorithm to solve

minimize FðxÞ
subject to xmin 6 x 6 xmax

ð2Þ

where x 2 Rn; xmin and xmax are the respective lower and upper
bounds for x. In this application, a is the point where the problem’s
oracle is queried and d is the search direction. This leads to the iter-
ative update xkþ1 ¼ xk þ aH

k dk where

aH

k ¼ arg min
a

Fðxk þ adkÞ : 0 6 a 6 amax ð3Þ

amax ¼maxa : xmin 6 xk þ adk 6 xmax ð4Þ

and dk is defined according to the chosen method.

In fact, there is a vast range of exact and inexact methods to
solve (1). The simplest approximate solution to the line search
problem used inside a search direction algorithm is a constant step
size aH

k . If this constant step is set too small, a slow convergence
rate will take place. If it is too large, the search direction algorithm
may diverge. This procedure does not guarantee convergence, even
when F is assumed to be strictly convex. To overcome these draw-
backs, reducing stepsize rules may be employed (Bertsekas, 2008),
which guarantee global optimality and termination if F is convex.

Another popular technique is the Armijo’s rule, also known as
successive stepsize reduction (Armijo, 1966; Shi & Shen, 2005).
The Goldstein’s test (Goldstein, 1965) adds the condition that the
step size is not too small if the Goldstein’s rule is verified. If the
cost to evaluate the derivative of F is small, the Wolf’s test (Wolfe,
1969) can be considered. Some algorithms derived from these tests
can be found in the work of Yuan (2010). Non-monotone variations
of these techniques are presented in Hu, Huang, and Lu (2010) and
Yu and Pu (2008).

Based on interval reductions, the bisection line search
(Bertsekas, 2008; Luenberger & Ye, 2010; Bazaraa & Shetty, 2006)
removes half of the search interval at each iteration. However, it re-
lies on the gradient of f and, hence, on the differentiability of f. Based
on two points information, the golden section algorithm reduces the
confidence interval to achieve convergence (Kiefer, 1953; Avriel &
Wilde, 1966). Section techniques based on curve fitting have also
been addressed, like the Brent’s algorithm (Brent, 1973).

This work is mainly interested in section like algorithms. The
concept of a v-pattern is explored in this paper to derive some no-
vel line search strategies. Moreover, it is proven that the golden
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section algorithm converges to a local minimum for any line search
problem (1), without the need of function unimodality. However,
as it is well known by practitioners, the algorithm output can be
worse than the starting point.

Based on these considerations, this work presents a framework
to derive line search section methods for arbitrary functions f, with
the guarantee of always keeping a local minimum of (1) whose
function value is no greater than f ð0Þ. These ideas are applied to
the Golden Section, bisection and Brent’s algorithms. The enhanced
algorithms are used as a block in a general algorithm, and the con-
verge of this algorithm is proved under mild conditions.

In order to contextualize the improvements proposed in this pa-
per, a brief overview of line search methods is given in the next
section.

2. Line search methods overview and state of the art

There is no line search method that is the best for all classes of
problems, since each one was developed to best explore some con-
ditions. Therefore, the art of matching problems and solvers is a
fundamental step in practical optimization. This section describes
the most notable line search methods, emphasizing advantages
and shortcomings of each one.

2.1. Constant step

A constant step requires no oracle queries: just choose a con-
stant aH

k ;8k, where the line search problem is actually bypassed.
However, convergence guarantees of a search direction algorithm
with constant step are typically problem dependent. Since a search
direction algorithm performs the iterative update xkþ1 ¼ xk þ aH

k dk,
a constant step aH

k implies asymptotical convergence whenever
dk ! 0 as k!1, considering also that dk ¼ 0 is an optimality
condition.

Moreover, it is possible to build a continuously differentiable
strictly convex function (see Fig. 1)

FðxÞ ¼

3ð1þxÞ2
4 � 2x� 1 ; x < �1

x2 ; xj j 6 1
3ð1�xÞ2

4 þ 2x� 1 ; x > 1

8>><
>>:

ð5Þ

such that, for dk ¼ �rFðxkÞ and aH

k ¼ 1, the objective function
decreases asymptotically, i.e. Fðxkþ1Þ < FðxkÞ;8k, to a non-optimal
value by getting trapped at xkþ1 ¼ �xk (Bazaraa & Shetty, 2006).
The respective sequence is not convergent for x0 – 0. This result
can be intriguingly stated: taking a sequence of constant non null
steps decreasing the objective function, towards shrinking-length
directions that are null only at optimal points, does not imply
convergence to a finite optimal point, even for continuously differ-
entiable strictly convex problems.

2.2. Backtracking

A typical theoretical guarantee of search direction methods is
Fðxk þ �dkÞ < FðxkÞ or, equivalently, f ð�Þ < f ð0Þ for a sufficient small
� > 0. However, a small step implies slow convergence rate of the
search direction algorithm. Conversely, a large step can make the
algorithm diverge or converge to a non-local minimum, as previ-
ously seen. The backtracking strategy fundamentally reduces a
large step size until some conditions which guarantee convergence
are met. Just like a constant step size, this strategy does not actu-
ally solve the line search problem (1).

2.2.1. Stop conditions
Armijo’s condition (Armijo, 1966) for a point aH > 0 can be

written as

f ðaHÞ 6 ~f ðaHÞ
f ðgaHÞ > ~f ðgaHÞ; g > 1

ð6Þ

where ~f is a variation of the linear approximation at a ¼ 0 given by

~f ðaÞ ¼ f ð0Þ þ �rf ð0Þa ð7Þ

for a fixed � 2 ð0;1Þ. The upper bound condition considers
rf ð0Þ < 0, otherwise it could not be satisfied by a convex function
f. Hence, it guarantees f ðaHÞ < f ð0Þ, which must be satisfied at least
at a sufficient small aH. Goldstein proposed a stricter condition
(Goldstein, 1965) where � 2 ð0;1=2Þ and g ¼ ð1� �Þ=�. Considering
backtracking algorithms, the lower bound condition is useless to be
tested. However, 1=g can be easily related to shrinking rate of the
step length in backtracking using amax as starting point, so that
Armijo’s lower bound condition follows naturally.

2.3. Bisection

Consider a line search problem (1) where f is continuously dif-
ferentiable and let a2 ¼ ða1 þ a3Þ=2 where ½a1;a3�# ½0;amax�. Let
D ¼ a3 � a1 be the interval length. A strictly positive derivative
rf ða2Þ implies 9� 2 ð0;D=2Þ such that f ða2 � �Þ < f ða2Þ, at least
for an infinitesimal � > 0, so that ða2;a3� can be cut out. Conversely,
a strictly negative derivative allows cutting out the subinterval
½a1;a2Þ. This process can be carried out until the localizing interval
becomes arbitrarily small. A null derivative rf ða2Þ ¼ 0 is a neces-
sary optimality condition for a2 and, hence, a natural stop criterion.
Therefore, the convergence is guaranteed by construction: half of
the localizing interval is cut out in each iteration.

Furthermore, the convergence rate is problem independent:
Dk=Dk�1 ¼ 2�1 where Dk is the localizing interval length at iteration
k, so that Dk=D0 ¼ 2�k. These properties imbue some robustness to
the bisection method, nevertheless, rf ða2Þ ¼ 0 is a necessary but
not a sufficient optimality condition.
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Fig. 1. Instance of (5) (left) where a constant step aH ¼ 1 line search asymptotically stalls at FðxÞ ¼ 1 (right), for any starting point x0 6 �1 or x0 P 1 (e.g. x0 ¼ 2 in this case).
Note that Fðxkþ1Þ < FðxkÞ;8k.

D.A.G. Vieira, A.C. Lisboa / European Journal of Operational Research 235 (2014) 38–46 39



Download	English	Version:

https://daneshyari.com/en/article/6897579

Download	Persian	Version:

https://daneshyari.com/article/6897579

Daneshyari.com

https://daneshyari.com/en/article/6897579
https://daneshyari.com/article/6897579
https://daneshyari.com/

