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a b s t r a c t

In the Distance Constrained Multiple Vehicle Traveling Purchaser Problem (DC-MVTPP) a fleet of vehicles
is available to visit suppliers offering products at different prices and with different quantity availabili-
ties. The DC-MVTPP consists in selecting a subset of suppliers so to satisfy products demand at the min-
imum traveling and purchasing costs, while ensuring that the distance traveled by each vehicle does not
exceed a predefined upper bound. The problem generalizes the classical Traveling Purchaser Problem
(TPP) and adds new realistic features to the decision problem. In this paper we present different math-
ematical programming formulations for the problem. A branch-and-price algorithm is also proposed to
solve a set partitioning formulation where columns represent feasible routes for the vehicles. At each
node of the branch-and-bound tree, the linear relaxation of the set partitioning formulation, augmented
by the branching constraints, is solved through column generation. The pricing problem is solved using
dynamic programming. A set of instances has been derived from benchmark instances for the asymmetric
TPP. Instances with up to 100 suppliers and 200 products have been solved to optimality.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many business environment, as those involved in raw mate-
rials and components purchase, the selection of suppliers is a key
procurement decision. Different aspects influence this decision
and different contributions appeared in the literature where pur-
chasing costs are optimized assuming that demand is either deter-
ministic or stochastic. Interested readers are referred to Benton
(1991) for a procurement problem with quantity discounts, to
Rosenblatt, Herer, and Hefter (1998) for policies on supplier selec-
tion, purchase frequency and quantity setting, Chauhan and Proth
(2003) for a procurement problem with concave purchase cost and
to Zhang and Zhang (2011) for an extension of the traditional set-
ting to include holding and shortage costs, a fixed cost for each se-
lected supplier as well as stochastic demand. More recently,
extensions of the so called Total Quantity Discount Problem
(TQDP) introduced in Benton (1991) are investigated by Goossens,
Maas, Spieksma, and Van de Klundert (2007) who develop an exact
method for the problem. Finally, Manerba and Mansini (2012)
study the generalization of TQDP where the quantity offered for
each product by a supplier is limited. They introduce different valid
inequalities for a formulation of the problem and use them in a
branch-and-cut algorithm.

Interestingly, all the cited contributions mainly focus on the pric-
ing aspect of the procurement problem. Nevertheless, procurement

costs are not just determined by purchasing costs. Typically, trans-
portation cost is a substantial component of the procurement costs
that needs to be optimized as well. A procurement setting that
explicitly incorporates both purchasing and transportation costs
has been studied in Mansini, Savelsbergh, and Tocchella (2012).
The authors consider the case of a company that has to select a set
of suppliers offering discounts based on the total quantity
purchased. The transportation costs are modeled as truckload
shipping costs, and thus depend on the total quantity purchased as
well.

The transportation cost structure described in Mansini et al.
(2012) is appropriate when the transportation service is outsour-
ced to a carrier company. In this paper, we study a procurement
setting where the purchaser company needs specified quantities
of a variety of products from a set of suppliers and is involved in
the direct collection of the purchased products with a fleet of vehi-
cles based at a common depot. Each supplier offers a subset of
products at possibly different prices and having different availabil-
ities. The company has to select a set of suppliers and construct a
set of routes so that total traveling and purchasing costs are mini-
mized. A distance constraint is set on the route traveled by each
vehicle. Such a constraint is determined by the working time of
vehicle drivers and imposes that the length of the route (defined
in terms of mileage or time) must not exceed a predefined bound.
The distinction between mileage and time is irrelevant if all vehi-
cles in the fleet are assumed to travel at the same average speed.

Let K :¼ {1, . . ., n} be the set of products to be purchased, let
M :¼ {1, . . ., m} be the set of suppliers to choose from, and a depot
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indexed by 0, and let F :¼ {1, . . ., l} be the fleet of identical vehicles
available for the service. Each product k,k 2 K, can be purchased at
a subset Mk # M of suppliers at a non-negative price pki, i 2Mk. A
discrete demand dk is specified for each product k 2 K, and a prod-
uct availability qki > 0 is defined for each product k 2 K and each
supplier i 2Mk such that

P
i2Mk

qki P dk. A distance bound Cmax is
imposed on each vehicle route. Let G = (V, A) be a directed graph
where V :¼M [ {0} is the node set and A :¼ {(i, j): i – j, i, j 2 V} is
the arc set. We indicate as cij the cost (distance) of traveling from
node i to node j. Each route starts and ends at node 0. The problem
looks for a set of routes visiting a subset of nodes in such a way that
the total traveling and purchasing costs are minimized while satis-
fying products demand and the distance bound on each route.

The problem generalizes the well-known Asymmetric Traveling
Purchaser Problem (see Riera-Ledesma & Salazar-Gonzalez (2006))
since a fleet, instead of a single vehicle, is available to visit suppliers.
Due to the distance bound associated with each vehicle and the fleet
of vehicles, we call this generalization the Distance Constrained
Multiple Vehicle Traveling Purchaser Problem (DC-MVTPP).

Following the literature on the TPP we refer to the special case
with unlimited supplies, i.e. qki P dk for all k 2 K and i 2Mk, as the
unrestricted DC-MVTPP, and to the more general case as restricted
DC-MVTPP. Notice that the unrestricted case is equivalent to
assuming that dk = 1 and qki = 1 for all k 2 K and i 2Mk.

On one hand, the TPP and its variants have been exhaustively
studied in the literature. See, for instance, Laporte, Riera-Ledesma,
and Salazar-Gonzalez (2003), and more recently, Mansini and Toc-
chella (2009) for the TPP with budget constraint, Angelelli, Mansini,
and Vindigni (2009) and Angelelli, Mansini, and Vindigni (2011) for
a dynamic version with quantities decreasing over time, Angelelli,
Mansini, and Vindigni (submitted for publication) for a dynamic
and stochastic variant, Gouveia, Paias, and Voss (2011) for the TPP
with additional side-constraints, and Cambazard and Penz (2012)
for a constraint programming solution method to the problem. On
the other hand, very few contributions can be found where the
TPP is generalized to the multiple vehicle case. In Choi and Lee
(2011) the authors introduce a reliability optimization problem as
variant of the multi-vehicle TPP. In Riera-Ledesma and Salazar-
Gonzalez (2012) the authors analyze the generalization of the
asymmetric unrestricted TPP to the multiple vehicle case with
capacity constraint. The problem is described as a location routing
problem in the context of school bus routing where each student
can be seen as a product available at any bus stop he/she can reach
by walking. A non-negative cost is associated with the assignment
of a student to a stop. This cost can be seen as the distance walked
by the student to reach the stop from home. The aim of the problem
is to assign each student to a stop so that the total length of routes
plus the total assignment cost is minimized while guaranteeing
that the number of students assigned to the stops of a route does
not exceed the vehicle capacity. The authors propose a model based
on a single commodity flow formulation and provide valid inequal-
ities to strengthen its linear programming (LP) relaxation. A branch-
and-cut algorithm is also introduced and tested on a large set of
randomly generated instances. Then, very recently, the same
authors proposed in Riera-Ledesma and Salazar-Gonzalez (2013)
a branch-and-cut-and-price approach to address a generalization
of the problem described in Riera-Ledesma and Salazar-Gonzalez
(2012), taking into account bounds not only on the loading capacity
but also on other resources.

The DC-MVTPP is NP-hard, as, other than the TPP, it generalizes
also the Distance Constrained VRP (DC-VRP). Indeed, any DC-VRP
instance can be solved as an unrestricted DC-MVTPP instance
where each supplier offers a product that is not available from
the remaining ones, and all products have to be purchased. To the
best of our knowledge the problem has never been studied before.
Nevertheless, it finds application in different relevant contexts. In

addition to the procurement domain already described, the unre-
stricted DC-MVTPP can also be seen as a variant of the school bus
routing problem described in Riera-Ledesma and Salazar-Gonzalez
(2012), where instead of a limit on the capacity a time threshold is
imposed on each vehicle route corresponding to the hard time win-
dow associated with school entrance.

The aim of this paper is to analyze the DC-MVTPP comparing
different problem formulations requiring a polynomial number of
constraints and to propose and test a branch-and-price approach,
based on column generation, for the solution of a set partitioning
formulation. The branch-and-price approach is compared with
the solution found by the polynomial size formulations when
solved with a state-of-the-art commercial solver.

The paper is organized as follows. In Section 2 we present dif-
ferent mathematical formulations of the problem, including a mul-
ti-commodity flow formulation, two different single commodity
flow formulations, a three-index formulation using the Miller-
Tucker-Zemlin generalization of subtour elimination constraints,
and a set partitioning formulation. Section 3 is devoted to the
description of the branch-and-price algorithm for the solution of
the set partitioning formulation. Variables, representing feasible
routes with respect to the distance bound, are dynamically gener-
ated. At each node of the branch-and-bound tree, while solving the
LP relaxation of the problem, columns are priced out by means of a
label setting algorithm addressing a Shortest Path Problem with
Resource Constraints (SPPRC). Routes are imposed to be elemen-
tary at the set partitioning model level. An effective restricted mas-
ter heuristic is used to prune the tree.

We tested the branch-and-price algorithm and the best per-
forming polynomial size formulations solved with CPLEX on a
new set of benchmark instances derived from those proposed in
Riera-Ledesma and Salazar-Gonzalez (2006) for the asymmetric
TPP (ATPP). For each ATPP instance, four DC-MVTPP instances have
been generated in such a way that the average number of vehicles
required in the solution of the ith instance, i = 1, 2, 3, is 2i. Section 4
reports all the computational results and shows the effectiveness
of the proposed solution approaches. We have been able to opti-
mally solve asymmetric instances both restricted and unrestricted
with up to 100 suppliers and 200 products, setting a maximum
running time of one hour. Notably, the optimality gap is very small
for all unsolved instances. We notice that the Miller-Tucker-Zemlin
formulation is more effective than the multi-commodity flow for-
mulation allowing CPLEX to massively use internal heuristics and
to quickly converge towards good feasible solutions when the
number of vehicles is low. The multi-commodity flow formulation,
due to its large number of variables, usually takes a lot of time even
to find a feasible solution. On the contrary, the single commodity
flow formulations may result to be a better compromise in prac-
tice, allowing to get more quickly good feasible solutions. In Sec-
tion 5 final considerations are drawn.

2. Mathematical formulations

In this section we analyze alternative formulations for the DC-
MVTPP. We start with a three-index vehicle flow formulation. Then
we introduce different polynomial size formulations including a
multi-commodity and two single commodity flow formulations,
as well as a three-index formulation using a Miller-Tucker-Zemlin
(MTZ) generalization of subtour elimination constraints. Finally,
we terminate the section with a set partitioning formulation.

2.1. The three-index vehicle flow formulation

The three-index vehicle flow formulation uses O(m2jFj) binary
variables x to indicate whether an arc is traversed in a feasible
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