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a b s t r a c t

This paper deals with the Traveling Salesman Problem (TSP) with Draft Limits (TSPDL), which is a variant
of the well-known TSP in the context of maritime transportation. In this recently proposed problem, draft
limits are imposed due to restrictions on the port infrastructures. Exact algorithms based on three math-
ematical formulations are proposed and their performance compared through extensive computational
experiments. Optimal solutions are reported for open instances of benchmark problems available in
the literature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Traveling Salesman Problem (TSP) with Draft Limits
(TSPDL) is a variant of the well-known TSP, recently introduced
by Rakke, Christiansen, Fagerholt, and Laporte (2012), that arises
in the context of maritime transportation. The sequence of ports
that a cargo ship visits in a tour is dependent on the port infra-
structures: the sea-level in a port is sometimes not sufficiently
deep to accommodate loaded cargo ships. The port is thus associ-
ated to a draft limit, i.e., the maximum vertical distance allowed
between the waterline and the bottom of the hull. Note that the
draft of a cargo ship depends on the load: the heavier the load,
the higher the ship’s draft. Therefore, draft limits can be easily
translated into restrictions on the maximum load of the ship.

The problem can be formalized as follows: A directed graph
G ¼ ðV ;AÞ is given, where V ¼ f0; . . . ;ng is the set of ports to be vis-
ited and A ¼ fði; jÞ; i; j 2 V ; i – jg is the arc set, or set of connections
between ports. Each arc ði; jÞ 2 A is associated to a routing cost
cij > 0. The vertex 0 is the port from which the ship starts and ends
its tour, whereas vertices V 0 ¼ f1; . . . ;ng are ports to be visited ex-
actly once. Each port requires the delivery of di; i 2 V 0, units of load
and is associated to a draft limit li; i 2 V 0. The initial load is
Q ¼

P
i2V 0di and we denote d ¼mini2V 0 fdig. The ship cannot enter

port i if its load is heavier than li, or the hull of the ship could be
grounded. Therefore the TSPDL asks for the minimum cost Hamil-

tonian tour, visiting each port exactly once and not violating draft
limit constraints.

Despite its simple definition, the TSPDL proves hard to solve to
optimality. In fact, the problem is NP-Hard since it includes the
TSP as special case when the drafts are sufficiently large.

Rakke et al. (2012) proposed two mathematical formulations:
the first formulation makes use of the binary variables xij assuming
value 1 if arc ði; jÞ is in the solution, and continuous variables yij,
representing the load on the ship while traveling arc ði; jÞ. The
resulting formulation is compact, but provides poor quality
bounds. The second formulation includes two additional sets of
variables: uj and tij specifying the position of port j and of arc
ði; jÞ in the circuit, respectively. These two sets of variables allow
for the introduction in the model of the Miller, Tucker, and Zemlin
(MTZ) constraints (Miller, Tucker, & Zemlin, 1960). The MTZ con-
straints, usually employed to avoid subtours, are used to strength-
en the formulation and they are included at the root node of the
branch-and-bound tree.

Both formulations have been further strengthened by dynami-
cally separating subtour elimination constraints (Dantzig, Fulker-
son, & Johnson, 1954), as well as their lifted counterpart (Balas &
Fischetti, 2004). Moreover, lower bounds on the uj variables and
lower bounds on the sum of yij variables are imposed.

The branch-and-cut algorithms originating from both formula-
tions are capable of solving quite effectively instances with a lim-
ited amount of ports with draft limits, but when the percentage of
ports with a draft limit increases, the algorithm struggles even for
medium-sized instances. The problem seems therefore challenging
and, as far as we are aware, no other attempts have been made to
solve it exactly. This motivated our interest in the problem and we
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decided to investigate alternative formulations and solution
techniques.

Three alternative mathematical formulations are introduced
(see Section 2). The first formulation is based on two-index vari-
ables, the second formulation is based on three-index variables,
whereas the third can be viewed as an improvement over a Dant-
zig–Wolfe decomposition of the second, including the concept of
ng-paths (Baldacci, Mingozzi, & Roberti, 2011), and it is solved
through a branch-cut-and-price algorithm.

In Section 3, a description of the branch-and-cut and branch-
cut-and-price implementations are presented. The results of our
computational experience are summarized in Section 4, while Sec-
tion 5 presents conclusions and future possible research directions.

2. Mathematical formulations

The exact algorithms proposed in this work are based on three
integer programming formulations that are described in this
section.

2.1. Formulation F1

The first formulation, denoted F1, is based on two sets of two-
indexed binary variables. The xij variable assumes value 1 if
ði; jÞ 2 A is in the solution, 0 otherwise. The variable yik assumes va-
lue 1 when the ship enters port i 2 V 0 carrying k 2 fdi; . . . ; lig units
of load, 0 otherwise. Note that arcs ði; jÞjdj > li � di can be removed
from the network: in order to simplify the notation we do not
explicitly remove these arcs, but it is sufficient to disregard the cor-
responding variables in our models to take this aspect into account.
The formulation F1 can be stated as follows:

ðF1Þ min
X
ði;jÞ2A

cijxij ð1Þ

s:t:
X

i2V ;i–j

xij ¼ 1; 8j 2 V ð2Þ
X

j2V ;j–i

xij ¼ 1; 8i 2 V ð3Þ
X

i2V 0 jliPk

yik 6 1; 8k 2 fd; . . . ;Q � dg ð4Þ

Xli

k¼di

yik ¼ 1; 8i 2 V 0 ð5Þ

yiQ ¼ x0i; 8i 2 V 0jli ¼ Q ð6Þ
yidi
¼ xi0; 8i 2 V 0 ð7Þ

xij þ yik 6 1þ yj;k�di
; 8ði; jÞ 2 A;

k 2 fdj þ di; . . . ;minfli; lj þ digg ð8Þ
xij 2 f0;1g; 8ði; jÞ 2 A ð9Þ
yik 2 f0;1g: 8i 2 V 0; k 2 fdi; . . . ; lig ð10Þ

The Objective Function (1) aims at minimizing routing costs.
Constraints (2) and (3) are the degree constraints. Constraints (4)
impose that the ship visits at most a port for each intermediate load
value. Constraints (4) are not necessary to define an optimal integer
solution, because Constraints (2), (3), (6) and (7) guarantee that the
ship performs a Hamiltonian tour in which the load is monotonically
decreasing. Preliminary experiments showed that these constraints
strengthen the linear relaxation and we included them in the formu-
lation. Constraints (5) state that each port has to be assigned to a
load. The first and last position of the tour are imposed to be con-
nected to the initial port 0 (Constraints (6) and (7), respectively).
Constraints (8) link variables xij and yik: if arc ði; jÞ is traversed,
xij ¼ 1 and i and j are located in consecutive positions of the tour.
Therefore summing variables xij and yik can result in a value equal

to 2 only if yj;k�di
¼ 1. These constraints generalize similar constrains

encountered in single-machine scheduling problems (an interested
reader can refer to the models based on assignment and positional
date variables in Keha, Khowala, & Fowler, 2009). Finally, Con-
straints (9) and (10) define the binary nature of the variables. Note
that Constraints (5)–(8) ensure that the flow is monotonically
decreasing along the tour and therefore subtours are avoided.

Formulation F1 presents similarities with the MTZ-based for-
mulation for the Asymmetric TSP (ATSP) (see Roberti & Toth, 2012
for a recent overview and comparison of ATSP models), but con-
sists only of binary variables.

F1 is strengthened by incorporating the trivial constraints

xij þ xji � 1; 8ði; jÞ 2 A ð11Þ

and by separating in a cutting plane fashion the subtour elimination
constraints:X
i2S

X
j2S

xij P 1: 8S # V 0 ð12Þ

For this latter set of inequalities, the exact separation can be done in
polynomial time.

2.2. Formulation F2

Formulation F2 considers three-indexed binary variables zk
ij,

assuming value 1 if arc ði; jÞ 2 A is traversed by the ship carrying
k units of load (including the demand of port j). By denoting
Kij ¼minflj; li � dig, formulation F2 is:

ðF2Þ min
X
ði;jÞ2A

XKij

k¼dj

cijzk
ij ð13Þ

s:t:
X

i2V
i–j

XKij

k¼dj

zk
ij¼1; 8j2V ð14Þ

X
j2V jj–i

ljPkþdj

zk
ji�

X
j2V jj–i

ljPk�di ;dj6k�di

zk�di
ij ¼0; 8i2V ; k2fdi; . . . ; lig ð15Þ

zk
i0¼0; 8i2V 0; k2f1; . . . ;Qg ð16Þ

zk
0j¼0; 8j2V 0 jlj¼Q ; k<Q ; k2fdj; . .. ; ljg ð17Þ

zk
ij 2f0;1g: 8ði;jÞ2A; k2fdj; . . . ;Kijg ð18Þ

The Objective Function (13) minimizes routing costs. Constraints
(14) are the degree constraints. Constraints (15) preserve the load
conservation. Constraints (16) and (17) force the ship to return to
the depot empty and leave the depot carrying Q units, respectively.
Constraints (18) define the nature of the variables. Formulation F2
is similar to the three-index formulations proposed in Fox, Gavish,
and Graves (1980), for the Time Dependent TSP.

Constraints

X
j2V
j–i

XKij

k¼dj

zk
ij ¼ 1; 8i 2 V ð19Þ

are implied by Constraints (14) and Constraints (15), as previously
stated in Pessoa, Poggi de Aragão, and Uchoa (2008).

F2 can be strengthened by the trivial constraints:

XKij

k¼dj

zk
ij þ

XKji

k¼di

zk
ji 6 1; 8ði; jÞ 2 A ð20Þ

that have been included in the formulation a priori.
Flow conservation constraints ensure that subtours are avoided

for F2 integer solutions, however we strengthened the formulation
by including the subtour elimination constraints as cutting planes
(as for F1):
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