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a b s t r a c t

This paper considers a discrete-time priority queueing model with one server and two types (classes) of
customers. Class-1 customers have absolute (service) priority over class-2 customers. New customer
batches enter the system at the rate of one batch per slot, according to a general independent arrival pro-
cess, i.e., the batch sizes (total numbers of arrivals) during consecutive time slots are i.i.d. random vari-
ables with arbitrary distribution. All customers entering the system during the same time slot (i.e.,
belonging to the same arrival batch) are of the same type, but customer types may change from slot to
slot, i.e., from batch to batch. Specifically, the types of consecutive customer batches are correlated in
a Markovian way, i.e., the probability that any batch of customers has type 1 or 2, respectively, depends
on the type of the previous customer batch that has entered the system. Such an arrival model allows to
vary not only the relative loads of both customer types in the arrival stream, but also the amount of cor-
relation between the types of consecutive arrival batches. The results reveal that the amount of delay dif-
ferentiation between the two customer classes that can be achieved by the priority mechanism strongly
depends on the amount of such interclass correlation (or, class clustering) in the arrival stream. We believe
that this phenomenon has been largely overlooked in the priority-scheduling literature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In multiclass queueing systems, where multiple types (or clas-
ses) of customers compete for the use of the same resources,
scheduling disciplines are used to determine the order of service
for customers of different types. One particular type of scheduling
that has received substantial attention in the queueing literature is
priority scheduling (Jaiswal, 1968; Takagi, 1991; Williams, 1980;
De Clercq, De Turck, Steyaert, & Bruneel, 2011; Min & Yih, 2010;
Jin & Min, 2007; Zeltyn, Feldman, & Wasserkrug, 2009; Feng &
Umemura, 2009; Walraevens, Fiems, Wittevrongel, & Bruneel,
2009; Gamarnik & Katz, 2009; Walraevens, Fiems, & Bruneel,
2006, 2008; Walraevens, Steyaert, & Bruneel, 2005; Maertens,
Walraevens, & Bruneel, 2007; Abate & Whitt, 1997; Maertens,
Walraevens, & Bruneel, 2008; Chang & Harn, 1992; Choi, Choi,
Lee, & Sung, 1998; Drekic & Grassmann, 2002; Fiems, Walraevens,
& Bruneel, 2007; Hashida & Takahashi, 1991; Laevens & Bruneel,
1998; Lee & Lee, 2003; Mehmet Ali & Song, 2004; Subramanian &
Srikant, 2000; Sugahara, Takine, Takahashi, & Hasegawa, 1995;
Takine, 1999; Tham, Yao, & Jiang, 2002; Van Houdt & Blondia,
2006; Walraevens, Steyaert, & Bruneel, 2004; Walraevens,
Steyaert, & Bruneel, 2002; Zhao, Li, Cao, & Ahmad, 2006; Chen &
Zhang, 2000; Adan, Sleptchenko, & Van Houtum, 2009; Maertens,

Bruneel, & Walraevens, 2012), where customers are partitioned
in a number of distinct classes and the order of service is based
on the classes customers belong to. E.g., class-1 customers have
(service) priority over all other classes, class-2 customers have pri-
ority over all classes except class 1, etc. Typical applications where
priority scheduling is used are, amongst others, packet switches in
modern telecommunication networks (Choi, Lee, & Un, 1997; Wal-
raevens et al., 2005; Fayza, 2010), where delay-sensitive packets
(e.g. telephony, teleconferencing, video) are given preferential
treatment above delay-tolerant packets (e.g. file transfer, e-mail),
or emergency services in hospitals, where patients requiring ur-
gent intervention are given priority over regular patients (Min &
Yih, 2010; Jacobson, Argon, & Ziya, 2012).

In classical priority queueing models, it is generally assumed
that the different classes of customers occur randomly and inde-
pendently in the arrival stream of customers into the system. In
this paper, however, we explicitly wish to examine the effect of
interclass correlation (or class clustering) in the arrival process of a
two-class priority queue on the performance of this queue. In par-
ticular, we are interested to know whether the degree to which
customers of the same type have the tendency to arrive closely to-
gether (i.e., ‘‘clustered’’), or, conversely, the degree to which such
customers have the tendency to be spread in time and mixed with
customers of the other type, have a substantial impact on the per-
formance of a two-class priority queueing system. In order to do so,
we superimpose a two-state Markovian interclass correlation
model (with arbitrary transition probabilities) on top of a regular
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general independent arrival-process model for the aggregated cus-
tomer stream.

For this model, we first derive the probability generating
function (pgf) of the total number of customers in the system,
as well as the pgf of the delay (system time) of an arbitrary cus-
tomer. These results can be easily retrieved from the well-known
analysis of a single-class discrete-time queueing model with
general i.i.d. arrivals and deterministic single-slot service times
(Bruneel & Kim, 1993; Vinck & Bruneel, 1995). Various perfor-
mance measures of practical use, such as the total mean system
content and the (global) mean delay of an arbitrary customer,
can be easily derived from this pgf. Next, we analyze the queue-
ing performance of the high-priority customer class (i.e., class 1).
This requires the solution of a single-class queueing model with
Markovian arrival interruptions. We are able to obtain explicit
expressions for the pgf’s of the class-1 system content and the
class-1 customer delay, and from this, performance measures
such as the mean number of class-1 customers in the system
and the mean delay of an arbitrary class-1 customer. Finally,
combining all the latter results, we are also able to derive expli-
cit expressions for the mean number of low-priority (i.e., class-2)
customers in the system and the mean delay of an arbitrary
class-2 customer.

The resulting formulas and a number of numerical examples re-
veal that the priority mechanism does what it is designed for, i.e.,
favor high-priority customers in terms of a lower mean delay than
low-priority customers, as long as the interclass correlation is suf-
ficiently low. For high to very high interclass correlation, however,
the delay-differentiation capabilities of the priority mechanism are
reduced significantly, and even disappear completely when the
interclass correlation approaches +1. We believe that this phenom-
enon is not well recognized in most of the priority-queueing liter-
ature, because the arrival process of the various types of customers
is usually chosen quite arbitrarily and not given much attention.
The current paper proves – by means of closed-form results – that
class clustering is not to be neglected in the context of priority
queues.

2. Mathematical model

We consider a discrete-time queueing system with infinite
waiting room, one server, and two types (classes) of customers,
named 1 and 2. As in all discrete-time models, the time axis is di-
vided into fixed-length intervals referred to as slots. New custom-
ers may enter the system at any given (continuous) point on the
time axis, but services are synchronized to (i.e., can only start
and end at) slot boundaries.

In order not to complicate matters, we model the service pro-
cess of the system as simply as possible in this paper. Specifically,
we assume that the service times of all customers (belonging to
either class 1 or class 2) are deterministically given by one slot
each. More general models for the service process will be the
subject of future investigations.

The arrival process of new customers in the system, however,
which is the main concern of this paper, is characterized in two
steps.

First, we model the total (aggregated) arrival stream of new
customers by means of a sequence of i.i.d. non-negative discrete
random variables with common probability mass function (pmf)
aðnÞ and common probability generating function (pgf) AðzÞ. More
specifically,

aðnÞ , Prob½n arrivals in one slot�; n P 0;

AðzÞ ,
X1
n¼0

aðnÞzn:

We call the total number of arrivals in one slot an arrival batch in
the sequel.

The mean batch size, i.e., the (total) mean number of arrivals
per slot, in the sequel referred to as the (total) mean arrival rate,
is given by

k ¼ A0ð1Þ: ð1Þ

Next, we describe the occurrence of the two types (1 and 2) in
the sequence of the consecutively arriving customer batches. First
of all, we assume in this study that each arrival batch contains only
one type of customers, i.e., either all type-1 customers or all type-2
customers. The case where customers of both types may be present
in the same batch has been considered in many existing studies
and is therefore not included here; we further comment on this
in Section 6. We further assume that both customer classes are
‘‘mixed’’ in the arrival stream, but that there may be some degree
of ‘‘class clustering’’ in the arrival process, i.e., customer batches of
any given type may (or may not) have a tendency to ‘‘arrive back-
to-back’’. Mathematically, this means that the types of two consec-
utive batches may be non-independent. Specifically, we assume a
first-order Markovian type of correlation between the types of
two consecutive batches, which basically means that the probabil-
ity that the next batch belongs to a given class depends on the type
of the previous batch.

It should be noted that our arrival model is a non-classical
‘‘mixture’’ of independent arrivals (on the aggregated level) and
correlated arrivals (for each customer class individually). It is not
to be confused with classical single-class Markovian arrival models
such as, for instance, in Ali Khan and Gani (1968), Pakes and
Phatarfod (1978), Bruneel (1985, 1988), Bruneel and Steyaert
(1996), Mehmet Ali and Song (2004), Gao, Wittevrongel,
Walraevens, and Bruneel (2008), and Claeys, Steyaert, Walraevens,
Laevens, and Bruneel (2013). There are two main reasons for this
choice. First, the lack of correlation in the aggregated arrival
process makes the analysis easier; secondly, it is our explicit
intention to study the impact of interclass correlation, i.e., correla-
tion between the arrivals of the two customer types, as ‘‘purely’’ as
possible, i.e., without possible interference of other sources of
correlation. For the same reason, we have kept the service process
as simple as possible (in particular, uncorrelated from customer to
customer).

Let tk denote the type (i.e., 1 or 2) of the batch arriving during
slot k. The transition probabilities of the Markov chain that
determines the types of the consecutive batches are then defined
as (see Fig. 1)

Prob½tkþ1 ¼ 1jtk ¼ 1� ¼ a; Prob½tkþ1 ¼ 2 j tk ¼ 1� ¼ 1� a;
Prob½tkþ1 ¼ 1jtk ¼ 2� ¼ 1� b; Prob½tkþ1 ¼ 2 j tk ¼ 2� ¼ b: ð2Þ

It is well-known (Bruneel & Kim, 1993; Bruneel, 1988) that for a
two-state Markov chain of this type, the steady-state probabilities
p1 and p2 of finding the chain in state 1 or 2 respectively, are given
by

p1 , lim
k!1

Prob½tk ¼ 1� ¼ 1� b
2� a� b

;

p2 , lim
k!1

Prob½tk ¼ 2� ¼ 1� a
2� a� b

: ð3Þ

Fig. 1. Two-state Markov chain of the customer types.
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