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a b s t r a c t

We consider a two-echelon, continuous review inventory system under Poisson demand and a one-for-
one replenishment policy. Demand is lost if no items are available at the local warehouse, the central
depot, or in the pipeline in between. We give a simple, fast and accurate approach to approximate the
service levels in this system. In contrast to other methods, we do not need an iterative analysis scheme.
Our method works very well for a broad set of cases, with deviations to simulation below 0.1% on average
and below 0.36% for 95% of all test instances.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

For advanced capital goods such as medical systems or defense
systems, downtime may have serious consequences in terms of
production loss and safety. To maintain such systems during their
life cycle, the availability of spare parts to replace failed compo-
nents is crucial. The related inventory holding costs can be huge,
making the optional positioning of spare parts in the supply chain
an important matter. Local stock points close to the installed base
guarantee fast delivery, while a single central location facilitates
low safety stocks because of the risk pooling effect. This leads to
the need to analyze the performance of a single-item, two-echelon
inventory model, consisting of various local warehouses that are
replenished from a central depot.

For (expensive) slow moving parts, it is common to model de-
mand by a Poisson distribution and to apply a one-for-one replen-
ishment policy, see e.g. Muckstadt (2005). Also, since system
downtime should be minimized, emergency procedures are
typically used in out-of-stock situations. That is, a part is supplied
from another source (e.g. the manufacturer) at additional costs. This
demand can thus be considered as lost to the two-echelon system.
The common approach in the literature is to use an emergency ship-
ment if the local warehouse is out of stock. In this paper, we apply an
emergency procedure only if the local warehouse is out of stock and
no item is available at the central depot or in the pipeline between
the depot and warehouse. The reason is that we focus on a setting

where the spare part may be kept in stock both at the customer sites
and at a forward stocking location serving all customers in a certain
region. As the lead times between the forward stocking location and
the customer sites are typically short, an emergency shipment from
a (remote) external supplier does not make sense if a much cheaper
regular shipment is feasible.

We found several related methods in the literature for the
performance evaluation of single-item two-echelon models with
lost sales, as we will explain in Section 2. For our variant, we devel-
op a new method to analyze the performance of the inventory sys-
tem in Section 3. We validate our method in Section 4 through a
numerical experiment. We finish with our conclusions in Section 5.

2. Literature

We consider literature on single-item, two-echelon supply
chains, consisting of multiple local warehouses facing Poisson dis-
tributed demand, and a central depot. Each location uses a continu-
ous review, one-for-one replenishment policy. Demand that cannot
be met from stock is served using an emergency shipment from an
external source with ample supply and is thus lost to the system. A
one-for-one replenishment policy is not always optimal under lost
sales, since holding costs can be reduced by not requesting a replen-
ishment directly after a demand occurs Hill (1999). The cost bene-
fits of a sophisticated policy are limited to 1–2% Bijvank and Vis
(2011).

It is well known that the analysis of such lost-sales inventory
systems is more complex than its equivalent under full backorder-
ing Bijvank and Vis (2011). In particular, the analysis of the central
depot is complex, since (i) the order process is not Poisson, and (ii)
the order arrival rate depends on the inventory states of the ware-
houses: warehouses only generate replenishment orders if they
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have stock on hand. In the literature, solutions exist for specific
cases. Muckstadt and Thomas (1980) consider a model where de-
mand at any warehouse is met using an emergency shipment from
the depot if the warehouse is out of stock and the depot still has
stock. If neither location has stock, an emergency shipment from
an external facility is used (with the demand thus lost to the sys-
tem). They approximate the demand rate at the depot by a Poisson
distribution with a constant rate.

In Andersson and Melchiors (2001), demand at a warehouse is
lost if the warehouse is out of stock, even if the depot still has stock
on hand. They approximate the arrival process at the depot by a
Poisson distribution with a rate dependent on the warehouse fill
rates and evaluate performance using an iterative approach: first,
they find the mean waiting time for replenishment orders at the
depot from the warehouse fill rates. Then, they find the warehouse
fill rates given the mean waiting time at the depot. This iterative
approach is reasonably accurate, but often does not converge when
a lot of stock is kept at the depot, with little stock kept locally. Such
a setting is very common for expensive slow movers to benefit
from risk pooling. Seifbarghy and Jokar (2006) consider a similar
approach for a model under an (R,Q) policy, i.e., with orders of size
Q placed when the inventory position reaches a level R. The authors
only consider identical warehouses and limit their experiments to
settings with high service levels (fill rates of 90% or more).

All papers mentioned above use rather simple approximations for
the analysis of the central depot, ignoring the fact that demand is not
Poisson. Also, they ignore that the demand rate at the depot depends
on the inventory levels at all warehouses. The only exception to the
latter is Hill, Seifbarghy, and Smith (2007) who assume that (i) each
local warehouse may have at most one outstanding order, and (ii)
the shipment time from depot to warehouse is at least the central
depot lead time. The second assumption is particularly restrictive,
since upstream lead times tend to exceed downstream ones.

In this paper, we apply an accurate analysis of the order arrival
rates and the pipeline at the central depot. We can handle non-
identical local warehouses and allow any number of outstanding
orders. As mentioned in the introduction, our notion of lost sales
differs from literature, as we satisfy demand using the two-echelon
network if an item is available in local stock, central stock or in
transit in between. We find very accurate approximations for the
service levels.

3. Model and analysis

3.1. Notation and assumptions

Fig. 1 illustrates our two-echelon model. We use index k = 0 for
the depot and indices k = 1, . . . ,K for the local warehouses. Demand
arriving at warehouse k is served through the two-echelon net-
work (the regular channel) if an item is available at the warehouse,
at the depot, or in the transport pipeline in between. Note that an
item in the transport pipeline can only be available if it has not yet
been assigned to backordered demand at the warehouse. If no such
item is available, we use an external emergency channel with
infinite capacity at additional costs, and the demand is lost to the
network. We use the following notation and assumptions:

� The stock at location k = 0, . . . ,K is controlled using an (Sk � 1,Sk)
installation stock policy.
� Demand at local warehouse k occurs according to a Poisson pro-

cess with rate mk.
� The replenishment lead time to the depot has an exponential

distribution with mean L0. This assumption facilitates an analy-
sis using Markov chains. Also, the performance of such lost sales
models is not very sensitive to the lead time distribution, see
Alfredsson and Verrijdt (1999).

� The transportation time from the depot to warehouse k is
deterministic and equal to Lk.
� The emergency shipment time to local warehouse k has an

arbitrary probability distribution function with mean Tk.

Our performance indicators are (i) the fraction of warehouse k
demand that is satisfied through the regular channel ak, and (ii)
the mean waiting time for demand satisfied through the regular
channel E[Wk] (k = 1, . . . ,K). These performance indicators enable
us to evaluate the mean downtime waiting for the spare part
DTWPk at local warehouse k as akE[Wk] + (1 � ak)Tk.

3.2. Analysis

We find E[Wk] from Little’s Law, i.e. E[Wk] = E[BOk]/akmk, with
BOk denoting the number of items backordered at warehouse k. In
turn, we find both E[BOk] and ak from the distribution of the number
of backorders at the depot destined for local warehouse k, which we
denote by BOk

0. This is the critical and novel part of our analysis.
Depot backorders occur when a warehouse sends a replenishment
request to the depot when the latter is out of stock. The distribution
of BOk

0 allows us to determine the distribution of the number of out-
standing orders (i.e. the pipeline) at warehouse k, which in turn al-
lows us to determine the distribution of BOk. From the distribution
of the depot backorders BOk

0 we also directly obtain ak: once the
depot is out of stock, at most Sk additional requests can still be
met through the regular channel (either directly from warehouse
stock or from items in the transport pipeline). Hence, once we have
Sk depot backorders for warehouse k, further demand at that
warehouse is lost. We thus find ak as follows:

ak ¼ PrfBOk
0 < Skg ¼ 1� PrfBOk

0 ¼ Skg ð1Þ

We first show how to find the distribution of BOk
0. Then, we

show how to find E[BOk]. For the analysis, we also need PIk, the
number of outstanding orders at each location (k = 0, . . . ,K).

3.2.1. Distribution of BOk
0, the number of backorders at the central

depot for warehouse k
We condition on the number of outstanding orders at the depot

PI0. Under full backordering, we can easily disaggregate the depot
backorders over the warehouses: Given y0 > S0 outstanding orders,
the conditional probability PrfBOk

0 ¼ xkjPI0 ¼ y0g of having xk back-
orders at the depot for warehouse k follows a binomial distribution
with y0 � S0 trials and ‘‘success probability’’ qk ¼ mk=

PK
h¼1mh

Graves (1985). However, this does not apply for our model. Also,
the arrival rates of replenishment orders at the depot are state-
dependent: the conditional probability of warehouse k being out
of stock given PI0 = y0 increases in y0, and so the arrival rate of
replenishment orders at the depot decreases in y0.

We now first show how to compute PrfBOk
0 ¼ xkjPI0 ¼ y0g ex-

actly. Using these conditional probabilities, we compute the
state-dependent arrival rates at the depot and find the distribution
of PI0. As an approximation in this second step, we assume that
these arrival rates have a Poisson distribution irrespective of the
value of PI0. Finally, we find the distribution of BOk

0 as follows:

Fig. 1. A graphical representation of the supply system.
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