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a b s t r a c t

This paper presents a global optimization approach for solving signomial geometric programming prob-
lems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard prob-
lems to solve for global optimality. But some transformation and convexification strategies can be used to
convert the original signomial geometric programming problem into a series of standard geometric pro-
gramming problems that can be solved to reach a global solution. The tractability and effectiveness of the
proposed successive convexification framework is demonstrated by seven numerical experiments. Some
considerations are also presented to investigate the convergence properties of the algorithm and to give a
performance comparison of our proposed approach and the current methods in terms of both computa-
tional efficiency and solution quality.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problems that contain signomial expressions in the
objective and constraint functions are usually called Signomial Geo-
metric Programming (SGP) problems. This kind of optimization
problems have a wide range of applications in engineering, science,
management, etc. Examples of application of SGP are engineering
design (Avriel & Barrett, 1978; Dembo & Avriel, 1978; Maranas &
Floudas, 1997; Marín-Sanguino, Voit, González-Alcón, & Torres,
2007; Xu, 2013), inventory control (Jung & Klein, 2005; Kim & Lee,
1998; Mandal, Roy, & Maiti, 2006), project management (Scott &
Jefferson, 1995), power control (Chiang, Tan, Palomar, O’Neill, & Julian,
2007), etc. Some comprehensive surveys of these applications can be
found in Maranas and Floudas (1997), Floudas (2000), Biegler and
Grossmann (2004), Chiang (2005), Boyd, Kim, Vandenberghe, and
Hassibi (2007), Floudas and Gounaris (2009), Lin, Tsai, and Yu (2012).

Since the SGP problems belong to a truly nonconvex class of prob-
lems that is an intrinsically intractable NP-hard problem, these prob-
lems are difficult to solve for global optimality. In the last decades,
some research has been directed toward the development of global
optimization strategies for SGP problems (Chiang et al., 2007;
Floudas, 2000; Lange & Zhou, in press; Li & Lu, 2009; Lin & Tsai,
2012; Lundell & Westerlund, 2009a, 2009b; Lundell, Westerlund, &
Westerlund, 2009; Maranas & Floudas, 1997; Pörn, Björk, & Westerlund,
2008; Qu, Zhang, & Ji, 2007; Shen, 2005; Toscano & Amouri, 2012;
Tsai & Lin, 2008, 2011; Tsai, Lin, & Hu, 2007; Wang, Zhang, & Gao,
2004; Westerlund, 2007). For example, Maranas and Floudas
(1997), Floudas (2000) proposed a branch-and-bound based global

optimization method for the solution of SGP problems by using the
exponential variable transformation and convex underestimation.
Shen (2005) globally solved SGP problems through a series of linear
programming problems. Chiang et al. (2007) presented a heuristic
strategy that can compute truly nonconvex power control problems
by solving a sequence of geometric programming (GP) problems
through the method of successive convex approximations. In the
practical implementation of this approach, however, more iterations
are possibly required to find the approximately global optimum of a
SGP problem (see Section 3.2, Example 6). Li and Lu (2009) devel-
oped a method to deal with SGP problems with mixed free-sign vari-
ables using some linearization and convexification techniques.
Lundell et al. (2009) presented some power transformation and
piecewise linear approximation strategies to reach a global optimal
solution of optimization problems including signomial terms.
Toscano and Amouri (2012) introduced some simple approaches for
easily solving a kind of nonconvex problems, called quasi geometric
programming problems. Lange and Zhou (in press) applied the geo-
metric arithmetic mean inequality and a supporting hyperplane
inequality to derive an MM algorithm for SGP problems. Tsai and
Lin (2011) proposed an approach for solving a posynomial geometric
programming with separable functions by utilizing superior piece-
wise linear functions and efficient variable transformations. This
method requires much time to reach an approximate global solution
of SGP problems (Lin & Tsai, 2012). To handle this difficulty of com-
putational burden, Lin and Tsai (2012) improved the Tsai and Lin
(2011) approach by using the range reduction strategies to decrease
the CPU time in treating the SGP problems. Two possible outcomes
produce when this modified version is used to solve a SGP problem.
One is that the Lin and Tsai (2012) method requires much time to
reach the globally optimal solutions of some SGP problems (see
Examples 2–4 in Lin & Tsai (2012)). The other is that the solution
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obtained by the Lin and Tsai (2012) method is not a global optimum
but a local one of CSTR sequence design problem in Lin and Tsai
(2012) (see also Section 3.2, Example 5).

In this paper, we present an iterative method to efficiently find the
globally optimal solution of an SGP problem. The approach proposed
relies on posing the nonconvex SGP problem as a standard GP problem
by using simple transformation and condense techniques. The result-
ing optimization problem can be solved very efficiently by a sequence
of standard GPs. We demonstrate the capabilities of the proposed
algorithm through seven numerical examples, comparing our results
with those produced by other methods. Numerical experiments show
that the proposed algorithm requires much lessCPU time to obtain the
global optimum of a SGP problem with lower errors in objective and
constraint functions than the current approaches do.

The rest of this paper is organized as follows. Section 2 describes
the SGP problems and presents the global optimization method for
solving SGP problems. Then seven numerical examples taken from
the literature are presented to illustrate the tractability and
effectiveness of the proposed approach in computational efficiency
and solution quality. Finally, brief conclusions are given in Section 4.

2. Global optimization of signomial geometric programming
problems

2.1. Signomial geometric programming problems

Let us consider a signomial geometric programming (SGP) in
the following form:

min f 0ðxÞ ¼
Xm0

j¼1

c0j

Yn

i¼1

x
a0ij

i ð1Þ

subject to satisfying:
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Xmk

j¼1
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xi > 0; i ¼ 1;2; . . . ;n ð4Þ

where x = (x1, x2, . . . , xn)T 2 Rn, ckj 2 R, akij 2 R, mk (k = 0, 1, . . . , q)
represents the number of product terms of the objective function
and of the constraints, and

Qn
1x

akij

i and fk (k = 0, 1, . . . ,q) are
monomial and signomial functions respectively.

The SGP problem as shown in Eqs. (1)–(4) is a highly nonlinear,
nonconvex optimization problem and difficult to solve for global
optimality.

2.2. Global optimization method

This paper proposes a global optimization approach for solving
SGP problems. Some transformation and convexification strategies
are applied to convert the original SGP problem into a sequence of
standard geometric programming (GP) problems that can be
solved to reach a global solution.

We first denote all functions fk (k = 0, 1, . . . , q) in Eqs. (1)–(3) as

fk ¼ fþk ðxÞ � f�k ðxÞ; k ¼ 0;1; . . . ; q ð5Þ

where fþk ðxÞ and f�k ðxÞ have the following posynomial formulations:

fþk ðxÞ ¼
X
j2Jþ

k

ckj

Yn
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x
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i ; k ¼ 0;1; . . . ; q

f�k ðxÞ ¼
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ð�ckjÞ
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i ; k ¼ 0;1; . . . ; q

where Jþk ¼ fjjj 2 Jk; ckj > 0g and J�k ¼ fjjj 2 Jk; ckj < 0g with
Jk = {1, 2, . . . , mk}.

Then optimization problem (1)–(4) can be written as the fol-
lowing equivalent formulation:

min fþ0 ðxÞ � f�0 ðxÞ þM ð6Þ

subject to satisfying:

fþk ðxÞ � f�k ðxÞ 6 1; k ¼ 1;2; . . . ;p ð7Þ
fþk ðxÞ � f�k ðxÞ ¼ 1; k ¼ pþ 1;pþ 2; . . . ; q ð8Þ
xi > 0; i ¼ 1;2; . . . ;n ð9Þ

where M > 0 is a sufficiently large constant. The reason for using
fþ0 ðxÞ � f�0 ðxÞ þM instead of fþ0 ðxÞ � f�0 ðxÞ to be the objective function
is that a sufficiently large M value will force fþ0 ðxÞ � f�0 ðxÞ þM > 0.

Next we introduce an additional variable x0 to create a linear
objective function and rearrange the constraints into quotient form
to obtain the following equivalent optimization problem:
min x0 ð10Þ

subject to satisfying:
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xi > 0; i ¼ 0;1; . . . ;n ð14Þ

In this representation, constraints (11)–(13) involve a special struc-
ture in the form of a ratio between two posynomials. This kind of
optimization problems as shown in Eqs. (10)–(14) belong to a truly
nonconvex class of problems known as complementary geometric
programming (CGP) (Chiang, 2005; Chiang et al., 2007) that is an
intrinsically intractable NP-hard problem.

Now we introduce auxiliary variables tk and rewrite optimiza-
tion problem (10)–(14) as
min x0 þ

X
k2K22[K23[K24

wktk ð15Þ

subject to satisfying:
fþ0 ðxÞ þM
f�0 ðxÞ þ x0

6 1 ð16Þ

fþk ðxÞ
f�k ðxÞ þ 1

6 1; k 2 K11 ð17Þ

fþk ðxÞ
f�k ðxÞ þ 1

6 1; k 2 K12 ð18Þ

fþk ðxÞ
f�k ðxÞ þ 1

¼ 1; k 2 K21 ð19Þ

fþk ðxÞ
f�k ðxÞ þ 1

6 1; k 2 K22 ð20Þ

fþk ðxÞ
f�k ðxÞ þ 1
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xi > 0; i ¼ 0;1; . . . ;n ð26Þ
0 6 tk 6 1; k 2 K22 [ K23 [ K24 ð27Þ
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