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a b s t r a c t

We consider finite horizon Markov decision processes under performance measures that involve both the
mean and the variance of the cumulative reward. We show that either randomized or history-based pol-
icies can improve performance. We prove that the complexity of computing a policy that maximizes the
mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We
finally offer pseudopolynomial exact and approximation algorithms.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The classical theory of Markov decision processes (MDPs) deals
with the maximization of the cumulative (possibly discounted) ex-
pected reward, to be denoted by W. However, a risk-averse deci-
sion maker may be interested in additional distributional
properties of W. In this paper, we focus on the case where the deci-
sion maker is interested in both the mean and the variance of the
cumulative reward (e.g., trying to optimize the mean subject to a
variance constraint or vice versa), and we explore the associated
computational issues.

Risk aversion in MDPs is of course an old subject. In one ap-
proach, the focus is on the maximization of E½UðWÞ�, where U is a
concave utility function. Problems of this type can be handled by
state augmentation (e.g., Bertsekas, 1995), namely, by introducing
an auxiliary state variable that keeps track of the cumulative past
reward. In a few special cases, e.g., with an exponential utility func-
tion, state augmentation is unnecessary, and optimal policies can
be found by solving a modified Bellman equation (Chung & Sobel,
1987). (The exponential utility function is often viewed as a surro-
gate for trading off mean and variance, on the basis of a single tun-
able parameter. The difficulty of solving mean–variance
optimization problems—which is the focus of this paper—does pro-
vide some support for using a surrogate criterion, more amenable
to exact optimization.) Another interesting case where optimal

policies can be found efficiently involves a ‘‘one-switch utility
functions’’ (the sum of a linear and an exponential) Liu and Koenig
(2005), or piecewise linear utility functions with a single break
point (Liu & Koenig, 2006).

In another approach, the objective is to optimize a so-called
coherent risk measure (Artzner, Delbaen, Eber, & Heath, 1999),
which turns out to be equivalent to a robust optimization problem:
one assumes a family of probabilistic models and optimizes the
worst-case performance over this family. In the multistage case
(Riedel, 2004), problems of this type can be difficult (Le Tallec,
2007), except for some special cases (Iyengar, 2005; Nilim & El
Ghaoui, 2005) that can be reduced to Markov games (Shapley,
1953).

Mean–variance optimization lacks some of the desirable prop-
erties of approaches involving coherent risk measures or risk-sen-
sitive utility functions (e.g., exponential utility functions) and
sometimes leads to counterintuitive policies. Bellman’s principle
of optimality does not hold, and as a consequence, a decision ma-
ker who has received unexpectedly large rewards in the first
stages, may actively seek to incur losses in subsequent stages in
order to keep the variance small. Counterintuitive and seemingly
‘‘irrational’’ behavior (i.e., incompatible with expected utility
maximization) can even arise in static problems under a mean–
variance formulation: for example, under a variance constraint,
one may prefer to forgo a profit which is guaranteed to be positive
but has a positive variance. Nevertheless, mean–variance optimi-
zation is a common approach in financial decision making e.g.,
(Luenberger, 1997), especially for static (one-stage) problems. Con-
sider, for example, a fund manager who is interested in the 1-year
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performance of the fund whose investment strategies will be
judged according to the mean and variance of the return. Assuming
that the manager is allowed to undertake periodic re-balancing ac-
tions in the course of the year, one obtains a Markov decision pro-
cess with mean–variance criteria, and it is important to know the
least possible variance achievable under a set target for the mean
return. While the applicability of the financial strategies arising
from mean–variance optimization in multi-period fund manage-
ment can be debated (due to the ‘‘irrational’’ aspects mentioned
above), mean–variance optimization is definitely a meaningful
objective in various engineering contexts. Consider, for example,
an engineering process whereby a certain material is deposited
on a surface. Suppose that the primary objective is to maximize
the amount deposited, but that there is also an interest in having
all manufactured components be similar to each other; this sec-
ondary objective can be addressed by keeping the variance of the
amount deposited small. In general, the applicability of the formu-
lations studied in this paper will depend on the specifics of a par-
ticular application.

Mean–variance optimization problems resembling ours have
been studied in the literature. For example, (Guo, Ye, & Yin,
2012) consider a mean–variance optimization problem, but subject
to a constraint on the vector of expected rewards starting from
each state, which results in a simpler problem, amenable to a pol-
icy iteration approach. Collins (1997) provides an apparently expo-
nential-time algorithm for a variant of our problem, and Tamar,
Di-Castro, and Mannor (2012) propose a policy gradient approach
that aims at a locally optimal solution. Expressions for the variance
of the discounted reward for stationary policies were developed in
Sobel (1982). However, these expressions are quadratic in the
underlying transition probabilities, and do not lead to convex opti-
mization problems. Similarly, much of the earlier literature (see
Kawai (1987), Huang & Kallenberg (1994) for a unified approach)
on the problem provides various mathematical programming for-
mulations. In general, these formulations either deal with prob-
lems that differ qualitatively focusing on the variation of reward
from its average (Filar, Kallenberg, & Lee, 1989; White, 1992) from
ours or are nonconvex, and therefore do not address the issue of
polynomial-time solvability which is our focus. Indeed, we are
not aware on any complexity results on mean–variance optimiza-
tion problems. We finally note some interesting variance bounds
obtained by Arlotto, Gans, and Steel (2013).

Motivated by considerations such as the above, this paper
deals with the computational complexity aspects of mean–
variance optimization. The problem is not straightforward for
various reasons. One is the absence of a principle of optimality
that could lead to simple recursive algorithms. Another reason
is that, as is evident from the formula varðWÞ ¼ E½W2� � ðE½W�Þ2,
the variance is not a linear function of the probability measure
of the underlying process. Nevertheless, E½W2� and E½W� are linear
functions, and as such can be addressed simultaneously using
methods from multicriteria or constrained Markov decision pro-
cesses (Altman, 1999). Indeed, we will use such an approach in
order to develop pseudopolynomial exact or approximation
algorithms. On the other hand, we will also obtain various
NP-hardness results, which show that there is little hope for
significant improvement of our algorithms.

The rest of the paper is organized as follows. In Section 2, we de-
scribe the model and our notation. **We also define various classes
of policies and performance objectives of interest. In Section 3, we
compare different policy classes and show that performance typi-
cally improves strictly as more general policies are allowed. In Sec-
tion 4, we establish NP-hardness results for the policy classes we
have introduced. Then, in Sections 5 and 6, we develop exact and
approximate pseudopolynomial time algorithms. Unfortunately,
such algorithms do not seem possible for some of the more

restricted classes of policies, due to strong NP-completeness re-
sults established in Section 4. Finally, Section 7 contains some brief
concluding remarks.

2. The model

In this section, we define the model, notation, and performance
objectives that we will be studying. Throughout, we focus on finite
horizon problems.1

2.1. Markov decision processes

We consider a Markov decision process (MDP) with finite state,
action, and reward spaces. An MDP is formally defined by a sextu-
ple M¼ ðT;S;A;R; p; gÞ where:

(a) T, a positive integer, is the time horizon;
(b) S is a finite collection of states, one of which is designated as

the initial state;
(c) A is a collection of finite sets of possible actions, one set for

each state;
(d) R is a finite subset of Q (the set of rational numbers), and is

the set of possible values of the immediate rewards. We let
K ¼ maxr2Rjrj.

(e) p : f0; . . . ; T � 1g � S � S �A ! Q describes the transition
probabilities. In particular, pt(s0js,a) is the probability that
the state at time t + 1 is s0, given that the state at time t is
s, and that action a is chosen at time t.

(d) g : f0; . . . ; T � 1g �R� S �A ! Q is a set of reward distri-
butions. In particular, gt(rjs,a) is the probability that the
immediate reward at time t is r, given that the state and
action at time t is s and a, respectively.

With few exceptions (e.g., for the time horizon T), we use capital
letters to denote random variables, and lower case letters to denote
ordinary variables. The process starts at the designated initial state.
At every stage t = 0,1, . . . , T � 1, the decision maker observes the
current state St and chooses an action At. Then, an immediate re-
ward Rt is obtained, distributed according to gt(�jSt,At), and the next
state St+1 is chosen, according to pt(�jSt,At). Note that we have as-
sumed that the possible values of the immediate reward and the
various probabilities are all rational numbers. This is in order to ad-
dress the computational complexity of various problems within
the standard framework of digital computation. Finally, we will
use the notation x0:t to indicate the tuple (x0, . . . , xt).

2.2. Policies

We will use the symbol p to denote policies. Under a determin-
istic policy p = (l0, . . . , lT�1), the action at each time t is determined
according to a mapping lt whose argument is the history Ht =
(S0:t,A0:t�1,R0:t�1) of the process, by letting At = lt(Ht). We let Ph

be the set of all such history-based policies. (The subscripts are
used as a mnemonic for the variables on which the action is al-
lowed to depend.) We will also consider randomized policies. Intu-
itively, at each point in time, the policy can pick an action at
random, with the probability of each action determined by the cur-
rent information (which is Ht as well as the outcomes of earlier
randomizations). Randomness can always be simulated by using
an independent uniform random variable as the seed, which leads
to the following formal definition. We assume that there is

1 Negative complexity results are straightforward to extend to the more general
case of infinite horizon problems. Also, some of the positive results, such as the
approximation algorithms of Section 6, can be extended to the infinite horizon
discounted case; this is beyond the scope of this paper.
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