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a b s t r a c t

In this paper, we study the shortest path tour problem in which a shortest path from a given origin node
to a given destination node must be found in a directed graph with non-negative arc lengths. Such path
needs to cross a sequence of node subsets that are given in a fixed order. The subsets are disjoint and may
be different-sized. A polynomial-time reduction of the problem to a classical shortest path problem over a
modified digraph is described and two solution methods based on the above reduction and dynamic pro-
gramming, respectively, are proposed and compared with the state-of-the-art solving procedure. The
proposed methods are tested on existing datasets for this problem and on a large class of new benchmark
instances. The computational experience shows that both the proposed methods exhibit a consistent
improved performance in terms of computational time with respect to the existing solution method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The shortest path tour problem ðSPTPÞ is a variant of the short-
est path problem ðSPPÞ and appeared for the first time in the sci-
entific literature in Bertsekas’s dynamic programming and optimal
control book [2].

The SPTP has been recently studied by Festa in [13]. The paper
of Festa is the first systematic contribution for solving the SPTP.
The author proved that the problem belongs to the complexity
class P. The polynomial Karp-reduction of the SPTP to the sin-
gle-source single-destination SPP involves the construction of an
expanded graph in which different algorithms for the SPP were
tested and compared on pseudo-randomly generated instances.
The results presented in [13] showed that Dijkstra’s algorithm out-
performs all the competitor algorithms.

Applications of the SPTP arise for example in the context of the
manufacture workpieces, where a robot has to perform at least one
operation selected from a set of S types of operations. In such case,
the problem may be modeled as a SPTP in which operations are
associated with nodes of a directed graph and the time needed
for a tool change is represented by the distance between two nodes
(see [13]).

The main scientific contribution of this paper consists in analyz-
ing some basic theoretical properties of the SPTP, in designing a
dynamic programming-based algorithm ðDPAÞ for solving it, and
showing how an ad hoc algorithm for acyclic graphs may be used
to solve the SPTP after efficiently reducing it to a classical SPP

through the method referred to as modified graph algorithm
ðMGAÞ.

The remainder of the paper is organized as follows. The problem
is formally described in Section 2. The state-of-the-art algorithm to
address the SPTP is presented in Section 3. Some properties con-
cerning the reducibility of the problem to a classical SPP and the
relevant consequences in terms of solvability are described in Sec-
tion 4. A dynamic programming algorithm is illustrated in Sec-
tion 5. Computational results and the analysis of the performance
of the proposed algorithms are presented in Section 6. The paper
ends with some concluding remarks stated in Section 7.

2. Problem description

Consider a directed graph G = (N,A) defined by a set of nodes
N :¼ {1, . . . , n} and a set of arcs A :¼ {(i, j) 2 N � N: i – j}, where
jAj = m. A non-negative length cij is assigned to each arc (i, j) 2 A.
Let F(i) :¼ {j 2 N: (i, j) 2 A} and B(i) :¼ {j 2 N: (j, i) 2 A} be the forward
star and backward star associated with each node i 2 N, respec-
tively. Moreover, let S denote a certain number of node subsets
T1, . . . , TS such that Th \ Tk = ;,h, k = 1, . . . , S,h – k.

Given two nodes i1, ip 2 N, i1 – ip, the path Pi1 ;ip from i1 to ip is
defined as a sequence of nodes Pi1 ;ip ¼ fi1; . . . ; ipg such that (ij, ij+1) -
2 A, j = 1, . . . , p � 1. Observe that ij, j = 1, . . . , p, represents the node
index occurring in position j in path Pi1 ;ip . A path Pi1 ;ip is said to be
elementary whether il – ij, l, j = 1, . . . , p and l – j. We refer to the
length of path Pi1 ;ip as lðPi1 ;ip Þ representing the sum of the lengths
of the arcs connecting consecutive nodes in Pi1 ;ip , i.e.,
lðPi1 ;ip Þ ¼

Pp�1
j¼1 cj;jþ1.

The SPTP aims at finding a shortest path Ps;d from origin node
s 2 V to destination node d 2 V in the directed graph G, such that it
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visits successively and sequentially the following subsets Tk,
k = 0, . . . , S + 1, such that T0 = {s} and TS+1 = {d}. Note that sets Tk,
k = 1, . . . , S, must be visited in exactly the same order in which they
are defined.

Consequently, a path Pi1 ;ip is said to be a feasible solution for the
SPTP if:

9 g0; g1 . . . gSþ1 2 ½1;p� : g0 < g1 < � � � < gSþ1;

ig0
2 Pi1 ;ip \ T0; ig1

2 Pi1 ;ip \ T1; . . . ; igSþ1
2 Pi1 ;ip \ TSþ1:

ð1Þ

Conditions (1) mean that an increasing sequence of natural
numbers exists such that the corresponding nodes of the path
Pi1 ;ip belong to the ordered sequence of subsets T0, T1, . . . , TS+1. A
small instance of the SPTP is depicted in Fig. 1, where N = {s = 1,
2, 3, 4, 5, 6, d = 7}, S = 2,T0 = {s = 1}, T1 = {3}, T2 = {2, 4},
T3 = {d = 7}. The shortest path from node 1 to node 7 is
P1;7 ¼ f1;3;7gwith length 5, while the shortest path tour between
the same origin and destination nodes is P1,7 = {1, 3, 2, 3, 7} with
length 11. Such path is not elementary, since it passes twice
through node 3.

3. The state-of-the-art

The state-of-the-art consists of the expanded graph method
proposed by Festa in [13], and referred to as EGA in the sequel.
A brief description of how the EGA works is given in the
following.

The EGA relies on a polynomial-time reduction algorithm that
transforms any SPTP instance defined on a single-stage graph G
into a single-source single-destination SPP instance defined on a
multi-stage graph G0 = (V0,A0) with S + 2 stages, each replicating G,
and such that V0 = {1, . . . , (S + 2)n} and jA0j = (S + 1)m. More pre-
cisely, the reduction algorithm performs the following
operations:

i. V0 :¼ {1, . . . , (S + 2)n}; A0 :¼ ;;
ii. at each iteration, an arc(a,b) is added to A0. In particular, for

each stage k 2 {0, . . . , S}, for each node v 2 {1, . . . , n}, and for
each adjacent node w 2 FS(v), (a,b) = (v + kn,w + (k + 1)n)
with length cvw, if w 2 Tk+1; (a,b) = (v + kn,w + kn) with
length cvw, otherwise.

Since jA0j = (S + 1)m, the computational complexity of the reduc-
tion algorithm is O(Sm).1 Once the multi-stage graph G0 is obtained,
to solve the resulting SPP any shortest path algorithm can be ap-
plied. By applying Dijkstra’s algorithm that uses a binary heap for
storing temporary node labels, the overall worst case computational
complexity of EGA is O(jA0jlogjV0j + jV0jlogjV0j), which is dominated by
O(jA0jlogjV0j), that is O(Smlogn).

4. A modified graph method

In this section, we will focus on some basic properties related to
the reducibility of any SPTP instance into a single-source single-
destination SPP instance.

4.1. On the reduction of the SPTP to the SPP

Given an instance of the SPTP on a directed graph G = (N,A) the
following definition is applied.

Definition 1. Let G(a) = (N(a),A(a),c(a)) be a weighted directed graph
obtained from G in such a way that:

� NðaÞ ¼
SSþ1

k¼0Tk;

� AðaÞ ¼
SS

k¼0AðaÞk , where

AðaÞk :¼ fði; jÞ 2 Tk � Tkþ1 : i 2 Tk and j 2 Tkþ1g;
� cðaÞ : AðaÞ # Zþ is a function that associates an integer non-neg-

ative number cðaÞij to each arc (i, j) 2 A(a), where cðaÞij :¼ lðPi;jÞ is the
length of a shortest path from node i 2 Tk to node j 2 Tk+1 on
graph G.

The following property holds for the arc set A(a).

Property 1. Let G(a) be the weighted directed graph associated with
an instance of the SPTP, then jA(a)j 6 n(n � 2).

Solving a SPTP instance may be performed by finding a shortest
path in G(a). Indeed, the following property holds.

Property 2. Every path PðaÞs;d from s to d in G(a) defines a SPTP solution
in G with the same cost, and vice versa.

Such a property derives from the construction of graph G(a) gi-
ven in Definition 1.

The optimal cost of any SPTP instance is equal to the cost of the
shortest path from node s to node d computed on G(a), as shown in
the following property.

Property 3. The cost of a shortest path PðaÞs;d in G(a) is equal to the cost
of an optimal SPTP in G.

Proof. Such property can be proved by contradiction. From

Property 2, it follows that the shortest path PðaÞs;d in G(a) corresponds
to a feasible path tour P�s;d in G. Hence, suppose that a shortest path

tour Ps,d different from P�s;d exists in G, such that lðPs;dÞ < l P�s;d
� �

.

This means that a feasible path PðaÞ
0

s;d exists in G(a), associated with

Ps,d, whose cost is less than the cost of the shortest path PðaÞs;d . This
conclusion contradicts the initial assumption. h

4.2. Solving the SPTP as SPP

The framework of the proposedMGA is sketched in Algorithm 1:

Algorithm 1. Modified graph algorithm

Step 1 (Initialization)
Compute a shortest path from each node i 2 Tk to each node

j 2 Tk+1, k = 0, . . . , S.
Step 2 (Graph Construction)
Build the digraph G(a) = (N(a),A(a)) as detailed in Definition 1.
Step 3 (Topological enumeration of N(a))
Step 4 (Shortest Path Computation)
Let lðP1;iÞ denote the length of the shortest path from node

s = 1 to node d = i, and p(i) denote
the predecessor node of i in P1;i.
Set lðP1;1Þ :¼ 0; pð1Þ :¼ 1 and iterationMGA :¼ 0.
for all j = 2, . . . , jN(a)j do

lðP1;jÞ ¼mini2NðaÞ :ði;jÞ2AðaÞ flðP1;iÞ þ cijg. Update p(j) with the

value of i whereby the minimum of lðP1;jÞ occurs.
Update the number of iterations as
iterationMGA ¼ iterationMGA þ 1.

end for

1 For bounding the computational complexity of an algorithm, several asymptotic
notations are used [6]. If n is the input size, the computational complexity of an
algorithm f(n) is O(g(n)), if there exist positive constants a and n0 such that
0 6 f(n) 6 ag(n) for all n P n0.
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