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a b s t r a c t

We study a class of mixed-integer programs for solving linear programs with joint probabilistic con-
straints from random right-hand side vectors with finite distributions. We present greedy and dual heu-
ristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for
our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation
of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While
we demonstrate through an extensive computational study the effectiveness and scalability of our heu-
ristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far
from optimal. Our computational study compares our heuristics against both the extended mixed-integer
programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics effi-
ciently and consistently produce solutions with small optimality gaps, while for larger instances the
extended formulation becomes intractable and the optimality gaps from the cutting plane method
increase to over 5%.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a linear program with a joint probabilistic or chance
constraint

min
x2X

cx

s:t: PðAx � ~bÞ � 1� e
ð1Þ

where X # Rd is a polyhedron, c 2 Rd;A 2 Rm�d; ~b is a random vector
taking values in Rm and e 2 (0,1) is the reliability level.

Chance constrained models have been utilized in several appli-
cations. In the context of finance (see [19]), the joint probabilistic
constraint is commonly referred to as a Value-at-Risk constraint.
In supply chain management [10], these models are used to con-
sider random supply and demand. In distillation processes [7],
chance constraints are used to analyze random water inflows.
Optimal vaccination strategies for preventing epidemics [20] is
yet another area where chance constrained models have been ap-
plied. For additional references, we refer the reader to [17].

Problems with joint probabilistic constraints (1) can be grouped
into one of the following two categories:

1. The distribution of ~b is discrete and finite.
2. The distribution of ~b is continuous or infinite.

Case 1 problems can at least in theory be solved to optimality,
by using binary variables to cast the problems as mixed-integer
programs with ‘‘big-M constraints’’ [18,15]. However, in practice,
this approach may have limited computational tractability in some
settings.

For case 2, aside from a few select distributions, no closed-form
exists for evaluating PðAx P ~bÞ for a given candidate solution x,
which prevents us from solving these problems to optimality. In
lieu of exact solution methods, recent attention has focused on gra-
dient methods [6] and on approximation methods that utilize
Monte Carlo sampling [2,15,8]. The latter yields case 1 problems
[12,16], which can then be solved either through mixed-integer
programming [11] or through heuristic algorithms.

In this paper, we build upon the work in Pagnoncelli et al. [16]
to develop specialized heuristics for case 1 problems.

Luedtke et al. [13] proved that the case 1 problems are NP-hard
and to solve them they developed both a cutting plane algorithm
and an extended mixed-integer programming formulation, which
is a specialization of work by Miller and Wolsey [14], where all
integer variables are binary. Luedtke et al. [13] leverage a natural
ordering in the right-hand side to overcome the weakness of the
big-M formulation. This inherent ordering has been utilized before
in case 2 problems to develop a branch-and-bound algorithm [3]
and we will also leverage this ordering in developing our linear
programming based heuristic algorithms.

Although we focus on case 1 problems, the algorithms we de-
velop in this paper will have direct applicability to case 2 problems
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when used in conjunction with sampling approaches. We compare
our algorithms with the cutting plane method and extended
mixed-integer programming formulation of Luedtke et al. [13].
We show that while their extended formulation becomes intracta-
ble for larger problems and their cutting plane method produces
increasing optimality gaps, our heuristics remain efficient and pro-
vide near-optimal solutions.

The remainder of this paper is organized as follows. Section 2
introduces the mixed-integer programming problem that we aim
to solve and presents the extended formulation of Luedtke et al.
[13]. (We refer the reader to Luedtke et al. [13] and Atamtürk
et al. [1] for detail on the cutting plane method.) In Section 3, we
present our greedy and dual heuristic. In Section 4, we prove that
the worst-case solution quality for our heuristic algorithms is arbi-
trarily far from optimal. In Section 5, we present a computational
study that compares our algorithms with the extended formulation
and the cutting plane method. Section 6 summarizes our contribu-
tions and discusses future research directions.

2. Background

Consider case 1 of chance constrained problem (1), where the
distribution of the right-hand side ~b is discrete and has scenarios
bx with corresponding probabilities px for all x 2X. For simplic-
ity, without loss of generality, we assume that bx P 0 for all
x 2X. By introducing jXj binary variables, we can restate this
problem as a mixed-integer program with the following big-M
formulation:

ðbig-MÞ min
x2X

cx ð2Þ

s:t: Axþ zxbx P bx x 2 X ð3ÞX
x2X

pxzx 6 e ð4Þ

z 2 f0;1gjXj; ð5Þ

where the big-M constant is bx, for each x. If binary variable zx = 0,
then Ax P bx (P 0 by assumption). If zx = 1, then we have Ax P 0,
which is satisfied because e < 1 implies that there will be at least
one x 2X such that zx = 0. The knapsack inequality (4) is equiva-
lent to the probabilistic constraint

X
x2X

pxð1� zxÞP 1� e:

2.1. Ordering the scenarios

Consider a single row in the big-M formulation (3):

Aixþ zxbx
i P bx

i x 2 X; ð6Þ

where Ai is the ith row of the constraint matrix A and bx
i is the ith

row of the right-hand side scenario bx. Let x(i,k) be the scenario
with kth largest right-hand side bxði;kÞ

i for row i. Then for every
row, there exists an index li such that

Xli�1

k¼1

pxði;kÞ 6 e <
Xli

k¼1

pxði;kÞ:

In other words, it would not be possible to remove all scenarios
{x(i,1), . . . , x(i, li)} without exceeding e; however, it would be pos-
sible to remove all scenarios {x(i,1), . . . , x(i, li � 1)}. Therefore, any
feasible solution x to case 1 of problem (1) must satisfy

Aix P bxði;liÞ
i for all i 2 I:

2.2. The tight-M formulation

Using li and w(i,k), we can replace the big-M formulation (2)–(5)
with the following tight-M mixed-integer program:

ðtight-MÞ min
x2X

cx ð7Þ

s:t: Aixþ zxði;kÞ bxði;kÞ
i � bxði;li Þ

i

� �
P bxði;kÞ

i i 2 I; 1 6 k 6 li � 1 ð8ÞX
x2X

pxzx 6 e ð9Þ

z 2 f0;1gjXj; ð10Þ

where bxði;kÞ
i � bxði;liÞ

i strengthens the formulation and 1 6 k 6 li � 1
avoids the redundant constraints that were identified in ordering
the scenarios according to row. For more detail on the tight-M for-
mulation (7)–(10) and on additional valid inequalities that can be
used to strengthen it, we refer the reader to Luedtke et al. [13]
and to work on mixing sets by Atamtürk et al. [1], Günlük and Pochet
[5], Guan et al. [4], Miller and Wolsey [14] and Küçükyavuz [9].

2.3. The extended formulation

Luedtke et al. [13] make further use of the ordered scenarios by
defining additional binary variables ux

i , for all
x 2 {x(1, i), . . . , x(i, li)}, to arrive at the following extended
mixed-integer programming formulation:

ðextendedÞ min
x2X

cx ð11Þ

s:t: Aixþ
Xli�1

k¼1

uxði;kÞ
i bxði;kÞ

i � bxði;kþ1Þ
i

� �
P bxði;1Þ

i i 2 I ð12Þ

uxði;kÞ
i � uxði;kþ1Þ

i P 0 i 2 I;1 6 k 6 li � 1 ð13Þ
zxði;kÞ � uxði;kÞ

i P 0 i 2 I;1 6 k 6 li � 1 ð14ÞX
x2X

pxzx 6 e ð15Þ

uxði;liÞ
i ¼ 0 i 2 I ð16Þ

uxði;kÞ
i 2 f0;1g i 2 I;1 6 k 6 li ð17Þ

z 2 f0;1gjXj; ð18Þ

which they prove is a valid formulation for the tight-M problem
(7)–(10). Constraint (13) orders the binary variables u and con-
straint (14) connects those binary variables to their corresponding
scenarios. This allows us to require only a single constraint (12)
for each row of A, which accounts for all scenarios corresponding
to those individual rows. For further detail on the extended formu-
lation, we refer the reader to Luedtke et al. [13].

3. The greedy and dual algorithms

In this section, we present greedy and dual heuristic algorithms
for solving case 1 of chance constrained problem (1). As we dem-
onstrate in Section 5, the mixed-integer programming formula-
tions – even the extended one – have limited computational
tractability. By leveraging the ordering detailed in Section 2, we de-
velop effective and scalable algorithms for heuristically solving
case 1 problems.

3.1. The greedy and dual algorithms

Consider the tight-M formulation (7)–(10). Our heuristic algo-
rithms solve a sequence of linear programming problems similar
to (7)–(10), while leveraging order to reduce the linear program
problem size. For each row i of constraint matrix A, we need only
include constraint (8) for the non-removed scenario x(i,k) for
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