
Production, Manufacturing and Logistics 

An enumeration procedure for the assembly line balancing problem 
based on branching by non-decreasing idle time 

Mariona Vilà, Jordi Pereira ⇑
Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (EUETIB), Universitat Politècnica de Catalunya, C. Comte Urgell, 187 1st Floor, 08036 Barcelona, Spain 

a r t i c l e i n f o

Article history: 
Received 2 February 2012 
Accepted 1 March 2013 
Available online 14 March 2013 

Keywords:
Branch and bound 
Manufacturing
Assembly line balancing 

a b s t r a c t

In this article, we present a new exact algorithm for solving the simple assembly line balancing problem 
given a determined cycle time (SALBP-1). The algorithm is a station-oriented bidirectional branch-and- 
bound procedure based on a new enumeration strategy that explores the fe asible solutions tree in a
non-dec reasing idle time order. The procedure uses several well-known lower bounds, dominance rules 
and a new logical test based on the assimilation of the feasibility problem for a given cycle time and num- 
ber of stations (SALBP-F) to a maximum-flow problem. 

The algorithm has been tested with a series of computational experiments on a well-known set of prob- 
lem instances. The tests show that the proposed algorithm outperforms the best existing exact algorithm 
for solving SALBP-1, verifying optimality for 264 of the 269 ben chmark instances. 

� 2013 Elsevier B.V. All rights reserved. 

1. Introduction 

An assembly line is a production system most commonl y used 
in the flow-line production of goods on an industrial scale. It con- 
sists of m workstations connected by a conveyor belt or similar 
mechanical device. As unfinished products travel from station to 
station, certain operations are performed to obtain the final prod- 
uct. The indivisible operations necessary to finish a product are 
known as tasks j = 1, . . . ,n and require a fixed operation time tj to
be completed. 

The conveyor belt speed determines the output rate and the 
time in which each task must be completed before moving on to 
the next station. The available time is the same for every station 
and is referred to as cycle time c. The total operation time of the 
tasks assigned to each station can never exceed the cycle time. 

Additionally , some tasks may not be able to start until another 
task has been completed. These preceden ce constraints must be 
fulfilled (i.e., if any task i assigned to station k precedes a task j as-
signed to station h, then h P k must hold).

The simple assembly line balancing problem type 1 (SALBP-1)
consists of assigning each task to a station and fulfilling the prece- 
dence constraints without exceeding the given cycle time c. The 
goal of this optimisation problem is to maximise the line efficiency
by minimising the number of stations used m. This process is 
equivalent to minimising the total idle time for all stations. 

Note that SALBP-1 is a reversibl e problem. As such, the prece- 
dence constraints may be reversed to obtain a different instance, 
and any solution found for the new instance can be converted to 
a solution for the original instance. Tasks can also be assigned to 
workstat ions in reverse order, and the initial or final workstations 
can even be constructed simultaneou sly. 

Before describing the proposed algorithm in further detail, we 
present a quick review of the existing literature concerning SAL- 
BP-1.

Over the last 60 years [8], numerous procedures have been pro- 
posed for solving this problem. A detailed review is available in 
[15]. These procedures may be classified into three groups: 

� Constructi ve (or greedy) algorithms, based on assigning tasks to 
stations using a priority rule. These procedures rarely yield an 
optimal solution for large instances, but they can offer sufficient
solutions for practical purposes in a short computation time [19].
� Enumerati ve algorithms, which have been proven to yield the 

best results for SALBP-1. Enumerative algorithms may be classi- 
fied as truncated, graph-based and tree-search-ba sed proce- 
dures. The truncated algorithms are heuristic procedures [5,9],
while graph-based algorithms are usually dynamic program- 
ming approach es [2,7,11]. Among tree-search-ba sed proce- 
dures, branch-and -bound procedures perform particularly 
well [10,12,16].
� Metaheur istic procedures , which have the advantage of being 

easily applicable to general problems, although their results 
are not usually as good as those obtained by exact procedures .
This group includes Tabu Search procedures [17], ant colony 
optimisa tion [1] and genetic algorithms [6].

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved. 
http://dx.doi.org/10.1016/j.ejor.2013.03.003

⇑ Corresponding author. Tel.: +34 934011096; fax: +34 934016054. 
E-mail addresses: mariona.vila.bonilla@upc.edu (M. Vilà), jorge.pereira@upc.edu

(J. Pereira).

European Journal of Operational Research 229 (2013) 106–113

Contents lists available at SciVerse ScienceDi rect 

European Journ al of Operational Research 

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.03.003&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.03.003
mailto:mariona.vila.bonilla@upc.edu
mailto:jorge.pereira@upc.edu
http://dx.doi.org/10.1016/j.ejor.2013.03.003
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Our proposed algorithm belongs to the second group: enumer- 
ative algorithms. It is a station-o riented, bidirectional branch-and 
bound procedure with a new ramification strategy, which enumer- 
ates feasible task assignment s to stations – identified as the nodes 
of the branch-and- bound tree – in a non-decreasing idle time or- 
der. This branching method allows the use of a strengthene d vari- 
ation of Johnson’s dominance rule [12]. The algorithm also includes 
Jackson’s dominance rule [11] and the Schrage–Baker labelling 
dominance rule [18]. The bounding strategy is based on a well- 
known set of seven lower bounds [14] and a new logical test based 
on the well-known maximum flow problem. Additionally, several 
preprocessing rules are applied to the problem to increase the effi-
ciency of the algorithm. 

The remainder of this manuscript is organised as follows. Sec- 
tion 2 details the preprocessing of the problem. Section 2.1 focuses
on the lower bounds, reduction techniques and logical tests used in 
the algorithm, while Section 2.2 describes a greedy heuristic and 
reviews the well-known Hoffmann heuristic, both of which are 
used to obtain upper bounds. Section 2.3 summarises the prepro- 
cessing step by combining the components described in Section 2.
In Section 3, we describe the branch-and-boun d procedure in fur- 
ther detail: the enumeration procedure is described in Section 3.1,
the bounding strategie s during the search tree are introduced in 
Section 3.2, the dominance rules are described in Section 3.3, and 
the steps performed by the branch-and- bound algorithm are sche- 
matised in Section 3.4. Section 4 presents the results obtained in 
the computati onal experience with the established benchmark 
set of problem instances. Finally, Section 5 gives a brief summary 
and some conclusio ns. Table 1 shows the notation that will be used 
throughout the paper. 

2. Problem preprocessin g

2.1. Bounding, reduction techniques and logical tests 

2.1.1. Lower bounds for SALBP-1 
Our procedure uses a well-known set of seven lower bounds, 

which will be referred to using Scholl’s notation [14]. These lower 
bounds will be used to prove whether a known solution is optimal 

and to preproces s the problem. Their use in the bounding strategy 
inside the branch-and -bound procedure will be further described 
in Section 3.2.1.

Four of these bounds are an assimilation of the SALBP-1 prob- 
lem to a BPP-1. The first and most intuitive bound (LB1) neglects 
the precedence and integrality constraints; it can be defined as 
the rounded-up sum of all of the operation times divided by the cy- 
cle time. The second bound (LB2) divides tasks into groups by their 
operation times: the first group (J1) includes all tasks j that verify 
tj > c/2. The number of tasks in this group is a bound itself because 
none of these tasks may share a station with another task included 
in J1. The bound may be strengthene d by adding half the number of 
tasks included in J2, a second group compose d by tasks with an 
operation time of exactly half the cycle time. 

A third bound (LB3) can be defined similarly to LB 2 by dividing 
tasks into groups consideri ng operation times in thirds of cycle 
time. Based on the same concept of counting tasks with specific
operation times, another bound can be defined [3]: LB 6 divides
tasks into three groups considering halves and thirds of the cycle 
time, sorts them by duration and successively tries to assign 
them to virtual stations. Adding a minimum number of stations 
for the tasks that have not been assigned further restricts this 
bound.

A fourth bound (LB4) can be defined by relaxing the problem to 
a one-machine scheduling problem [12]. By applying this bound to 
both the original and reversed problem, we obtain the heads and
tails of every task. The earliest Ej and latest Lj stations to which each 
task may be assigned can be calculated given an upper bound m
and the aj (heads) and nj (tails), respectively: 

Ej ¼ bajc þ 1 ð1Þ
Lj ¼ m� dnje þ 1 ð2Þ

To further restrict the following bound, the latest stations may 
be calculated as the latest to which the task can be assigned to im- 
prove the current solution by consideri ng a more restrictiv e upper 
bound (m = m � 1):

Lj ¼ m� 1� dnje þ 1 ¼ m� dnje ð3Þ

If any task j verifies Ej > Lj for a number of stations m0, then a fea- 
sible solution with m0 stations cannot exist. The minimum m0 for
which all tasks verify Ej 6 Lj is a fifth bound (LB5). Our algorithm 
also uses the classical formulation of LB 5: for each task, the sum 
of hj, zj and processing time pj is obtained. The largest of these val- 
ues constitutes a fifth lower bound (LB5).

Finally, a seventh lower bound (LB7) is found by assimilating the 
SALBP-1 problem to a SALBP-2 (which consists of minimising the 
cycle time for a given number of stations). For an m0 number of sta- 
tions (the most restrictiv e lower bound), a minimum number of 
tasks bound to share a station can be found. This number is used 
to calculate an upper bound for the cycle time c(m0). The first m0

to verify c(m0) P c is a lower bound to the original problem. 

2.1.2. Reduction rules 
The first reduction rule increases the task operation time, if pos- 

sible. Known as the Extended Duration Augmentation Rule, this 
rule constitutes an extension of the Johnson dominan ce rule [12].
Consideri ng no precedence constraints and known Ej and Lj for
all tasks, the set of tasks that can share a station with a task j is
compose d by those tasks i for which Ei 6 Lj and Ej 6 Li. If no combi- 
nation between j and the tasks in this set fills the station com- 
pletely, tj can be increased by the difference between the cycle 
time and the maximum possible load. The problem can be solved 
as a 0–1 knapsack problem, considering the task operation times 
as both weights and values and a maximum load equal to the cycle 
time, as observed in Martello and Toth [13].

Table 1
Notation used in the paper. 

Symbol Description 

c Cycle time 
n Number of tasks 
i, j Task identifiers
tj Operation time for task j
k, h Station identifiers
kf Earliest unloaded station, used during the description of the 

branch-and-bound 
kb Latest unloaded station, used during the description of the branch- 

and-bound 
m Current upper bound on the number of stations, obtained by any 

solving procedure 
mf Number of stations constructed in the forward direction 
mb Number of stations constructed in the backward direction 
Bk Set of tasks assigned to station k
BPj Set of total predecessors for task j
BFj Set of total followers for task j
aj Head for task j, obtained in the calculations for LB 4
nj Tail for task j, obtained in the calculations for LB 4
Ej Earliest possible station for task j, given hj

Lj Latest possible station for task j, given aj and an upper bound 
Tk Average task time for station k, used to select a branching direction 
pj Processing time for task j, defined as pj = tj/c
Dk Load for station k, defined as the sum of processing times of the 

tasks assigned to station k,
P
8i2Bk

ti

M. Vilà, J. Pereira / European Journal of Operational Research 229 (2013) 106–113 107



Download English Version:

https://daneshyari.com/en/article/6897933

Download Persian Version:

https://daneshyari.com/article/6897933

Daneshyari.com

https://daneshyari.com/en/article/6897933
https://daneshyari.com/article/6897933
https://daneshyari.com

