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a b s t r a c t

We address a version of the Half-Product Problem and its restricted variant with a linear knapsack con-
straint. For these minimization problems of Boolean programming, we focus on the development of fully
polynomial-time approximation schemes with running times that depend quadratically on the number of
variables. Applications to various single machine scheduling problems are reported: minimizing the total
weighted flow time with controllable processing times, minimizing the makespan with controllable
release dates, minimizing the total weighted flow time for two models of scheduling with rejection.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The topic of designing approximation schemes for scheduling
problems with min-sum objective functions has recently drawn
considerable attention. While for many problems of this range pur-
pose-built approximation schemes have been developed, a general
framework has been identified based on reformulation of the origi-
nal scheduling problems in terms of minimization problems of
quadratic Boolean programming. The Half-Product Problem and
the closely related Symmetric Quadratic Knapsack Problem appear
to be among the most suitable models, see recent reviews by Ka-
cem et al. (2011) and Kellerer and Strusevich (2012).

This paper studies a version of the Half-Product Problem and its
modification with the knapsack constraint, establishes conditions
under which the problems admit fast fully polynomial-time
approximation schemes, describes the relevant algorithms and dis-
cusses their scheduling applications.

Let x = (x1,x2, . . . , xn) be a vector with n Boolean components.
Consider the function

HðxÞ ¼
Xn

16i<j6n

aibjxixj �
Xn

j¼1

cjxj; ð1Þ

where for each j, 1 6 j 6 n, the coefficients aj and bj are non-nega-
tive integers, while cj is an integer that can be either negative or po-
sitive; in fact, without loss of generality, we may assume that all cj

are non-negative, since otherwise for a negative cj we may set xj = 0
without increasing the value of H(x). Problems of quadratic Boolean
programming similar to (1) were introduced in 1990s as mathemat-
ical models for various scheduling problems by Kubiak (1995) and
Jurisch et al. (1997). This function and the term ‘‘Half-Product’’ were
introduced by Badics and Boros (1998), who considered the prob-
lem of minimizing the function H(x) with respect to Boolean deci-
sion variables with no additional constraints. The function H(x) is
called a Half-Product since its quadratic part consists of roughly half

of the terms of the product
Pn

j¼1ajxj

� � Pn
j¼1bjxj

� �
. Notice that we

only are interested in the instances of the problem for which the
optimal value of the function is strictly negative; otherwise, setting
all decision variables to zero solves the problem.

In this paper, we refer to the problem of minimizing function
H(x) of the form (1), as Problem HP. This problem is NP-hard in
the ordinary sense, even if aj = bj for all j = 1,2, . . . ,n, as proved by
Badics and Boros (1998). It has numerous applications, mainly to
machine scheduling; see Erel and Ghosh (2008) and Kellerer and
Strusevich (2012) for reviews. Notice that in those applications a
scheduling objective function usually is written in the form

FðxÞ ¼ HðxÞ þ K; ð2Þ

where K is a given additive constant. We refer to the problem of
minimizing function F(x) of the form (2), as Problem HPAdd.

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2012.12.028

⇑ Corresponding author. Tel.: +44 20 83318662; fax: +44 20 83318665.
E-mail addresses: hans.kellerer@uni-graz.at (H. Kellerer), V.Strusevich@

greenwich.ac.uk (V. Strusevich).

European Journal of Operational Research 228 (2013) 24–32

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2012.12.028
mailto:hans.kellerer@uni-graz.at
mailto:V.Strusevich@        greenwich.ac.uk
mailto:V.Strusevich@        greenwich.ac.uk
http://dx.doi.org/10.1016/j.ejor.2012.12.028
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Consider the function

PðxÞ ¼
Xn

16i<j6n

aibjxixj þ
Xn

j¼1

ljxj þ
Xn

j¼1

mjð1� xjÞ þ K; ð3Þ

where all coefficients aj are positive integers, and bj, lj, mj and K are
non-negative integers. Following Janiak et al. (2005), we call the
problem of minimizing the function P(x) of the form (3) the Positive
Half-Product Problem or Problem PosHP. Notice that Problem PosHP
is a special case of Problem HPAdd.

In all Half-Product Problems introduced above, the minimum is
sought for over all n-dimensional Boolean vectors, i.e., they are
quadratic Boolean programming problems with no additional con-
straints. In this paper, we also study a more restricted version of
Problem PosHP, in which an additional knapsack constraint is
introduced, i.e., the problem

Minimize PðxÞ ¼
Xn

16i<j6n

aibjxixj þ
Xn

j¼1

ljxj þ
Xn

j¼1

mjð1� xjÞ þ K

Subject to
Xn

j¼1

ajxj 6 A

xj 2 f0;1g; j ¼ 1;2; . . . ;n; ð4Þ

which we call the Positive Half-Product Knapsack Problem and denote
by Problem PosHPK.

Similarly to the classical Linear Knapsack Problem (see the com-
prehensive monographs Martello and Toth (1990) and Kellerer
et al. (2004) on this most studied problem of Combinatorial Opti-
mization), Problem PosHPK contains a linear knapsack constraint.
We can view the value aj as the weight of item j, 1 6 j 6 n, i.e.,
xj = 1 means that item j is placed into a knapsack with capacity A,
while xj = 0 means that the corresponding item is not placed into
the knapsack. An important feature of our problem is that the coef-
ficients aj in the knapsack constraint are the same as in the qua-
dratic terms of the objective function. The latter feature makes
Problem PosHPK to be a special case of another quadratic knapsack
problem, namely the problem

Minimize SðxÞ ¼
X

16i<j6n

aibjxixj þ
X

16i<j6n

aibjð1� xiÞð1� xjÞ

þ
Xn

j¼1

ljxj þ
Xn

j¼1

mjð1� xjÞ þ K

Subject to
Xn

j¼1

ajxj 6 A

xj 2 f0;1g; j ¼ 1;2; . . . ; n:

ð5Þ

Following Kellerer and Strusevich (2010a,b), we call the latter
problem the Symmetric Quadratic Knapsack Problem, or Problem
SQK. We use the term ‘‘symmetric’’ because both the quadratic
and the linear parts of the objective function are separated into
two terms, one depending on the variables xj, and the other
depending on the variables (1 � xj). A comprehensive review of
the results on Problem SQK and its scheduling applications is given
by Kellerer and Strusevich (2012).

Table 1 summarizes the notation introduced above for all Bool-
ean programming problems under consideration.

Since this paper focuses on the development of approximation
algorithms and schemes, below we recall the definitions of the rel-
evant notions. For a problem of minimizing a function Z(x), where
x is a collection of decision variables, let x⁄ denote the vector that
delivers the minimum to the function Z(x); we call x⁄ an optimal
solution of the corresponding problem. A polynomial-time algo-
rithm that finds a feasible solution x0 such that Z(x0) is at most
q P 1 times the optimal value Z(x⁄) is called a q-approximation
algorithm; the value of q is called a worst-case ratio bound. For a

problem of Boolean programming of minimizing a function Z(x),
which may take negative and positive values, a vector x0 is called
an e-approximate solution if for a given positive e the inequality
Z(x0) � Z(x⁄) 6 ejZ(x⁄)j holds. A family of algorithms that for any gi-
ven positive e find an e-approximate solution is called a Fully Poly-
nomial-Time Approximation Scheme (FPTAS), provided that the
running time depends polynomially on both the length of the input
and 1/e.

A detailed review on the design of FPTASs for problems relevant
to this study is given by Kellerer and Strusevich (2012). Badics and
Boros (1998) give the first FPTAS for Problem HP but its running
time is Oðn2 log

P
aj=eÞ is not strongly polynomial. The first FPTAS

for Problem HP that requires strongly polynomial time O(n2/e) is
due to Erel and Ghosh (2008).

The algorithms that behave as an FPTAS for Problem HP to min-
imize a Half-Product H(x) of the form (1) do not necessarily deliver
an e-approximate solution for the problem of minimizing the
function F(x) of the form (2), although both problems have the
same optimal solution x⁄ and for any vector x the equality
F(x) � F(x⁄) = H(x) � H(x⁄) holds. This is due to the fact that
H(x⁄) < 0 and it is possible that jF(x⁄)j = jH(x⁄) + Kj < jH(x⁄)j. Starting
from the pioneering work by Badics and Boros (1998), the matter
of designing an FPTAS for the Half-Product problem with an addi-
tive constants, including adapting an FPTAS for Problem HP, has
initiated many publications, see, e.g., Janiak et al. (2005), Kubiak
(2005), Erel and Ghosh (2008) and Kellerer and Strusevich
(2012). In particular, addressing this issue Janiak et al. (2005)
introduce the Positive Half-Product, i.e., Problem PosHP. However,
the FPTAS that they develop in their paper for Problem PosHP still
requires Oðn2 log

P
aj=eÞ time. Erel and Ghosh (2008) present

several conditions under which an FPTAS for Problem HP behaves
as an FPTAS for Problem HPAdd; see, e.g., Lemma 2 in Section 2 of
this paper.

As follows from the survey by Kellerer and Strusevich (2012), in
all known applications of quadratic Boolean programming prob-
lems related to the Half-Product the objective function is convex.
That is why we study Problem PosHPK and its relaxed version,
Problem PosHP without a knapsack constraint, provided that the
objective function P(x) is convex. For each of these problems with
a convex objective function, this paper delivers an FPTAS that re-
quires O(n2/e) time. This running time is much smaller than O(n4/
e2) established by Kellerer and Strusevich (2010b) for Problem
SQK (under additional assumptions that include the convexity of
an objective function) or O(n4loglogn + n4/e2) provided by Xu
(2012) for an arbitrary Problem SQK. The developed FPTAS can
be applied to several scheduling problems, resulting in improved
approximation schemes for their solution.

2. What is needed to design an FPTAS

In this section, we describe the ingredients that are needed in
order to design an FPTAS for Problem PosHP and Problem PosHPK.

We start our consideration with Problem PosHPK of the form
(4). As is often the case, the resulting FPTAS is obtained by modify-
ing a dynamic programming (DP) algorithm for the problem. Such
an algorithm is given below. Notice that the algorithm is rather
straightforward and manipulates with the objective function (3)

Table 1
Notation for Boolean programming problems under consideration.

Problem acronym Objective/formulation Additional constraints

HP H(x) (1) None
HPAdd F(x) (2) None
PosHP P(x) (3) None
PosHPK P(x) (4)

Pn
j¼1ajxj 6 A

SQK S(x) (5)
Pn

j¼1ajxj 6 A
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