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a b s t r a c t

Let a multiobjective linear programming problem and any efficient solution be given. Tolerance analysis
aims to compute interval tolerances for (possibly all) objective function coefficients such that the efficient
solution remains efficient for any perturbation of the coefficients within the computed intervals. The
known methods either yield tolerances that are not the maximal possible ones, or they consider pertur-
bations of weights of the weighted sum scalarization only. We focus directly on perturbations of the
objective function coefficients, which makes the approach independent on a scalarization technique used.
In this paper, we propose a method for calculating the supremal tolerance (the maximal one need not
exist). The main disadvantage of the method is the exponential running time in the worst case. Neverthe-
less, we show that the problem of determining the maximal/supremal tolerance is NP-hard, so an effi-
cient (polynomial time) procedure is not likely to exist. We illustrate our approach on examples and
present an application in transportation problems. Since the maximal tolerance may be small, we extend
the notion to individual lower and upper tolerances for each objective function coefficient. An algorithm
for computing maximal individual tolerances is proposed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a contribution to postoptimal analysis in multiob-
jective linear programming, namely to tolerance analysis. Postopti-
mal analysis is a fundamental tool to study effects of various
uncertainties and data perturbations on the model. The standard
sensitivity analysis [25,27,28] inspects behavior of one coefficient
perturbation. Contrary, tolerance analysis was developed to handle
simultaneous and independent variations of several coefficients.
Thus it is a more powerful technique enabling the decision maker
to handle more complex perturbations.

Tolerance analysis was pioneered by Wendell [31,32] in linear
programming, and then investigated by many researchers; see
e.g. [1,15,30,34]. It found applications not only in mathematical
programming, but for example in linear regression [17,29], too.

In multiobjective linear programming, tolerance analysis was
adapted by a few of ways. Since multiobjective linear program-
ming problems are often solved by a weighted sum scalarization,
the first approach concerns tolerance analysis of the objective
function weights [4,5,10,19]. In this approach, one solves a
weighted sum scalarization problem by a simplex method, and

then determines the maximal tolerances for the weights while
retaining the optimal basis. Badra [2] extended the method to cal-
culate a percentage tolerance allowing perturbations in both the
weighted sum of the objective function coefficients and in the right
hand side terms while remaining the same solution optimal.

There are several disadvantages of these approaches. First, it
gives no information about admissible perturbations of the original
objective function coefficients, which is a serious drawback since
sensitivity analysis of the original input data is of high importance.
Second, it is highly dependent on the weighted sum scalarization
and on the simplex method, and cannot be easily adapted to other
scalarization technique and to other linear programming solvers.
Further, basis invariancy based sensitivity approach is known to
be restricted and does not yield the highest possible perturbation
ranges [13,15,18].

To overcome these drawbacks, another way of research was to
adapt tolerance analysis directly on the objective function coeffi-
cients, and also not to rely on the simplex method based analyses.
This approach was followed by Hladík [11], who proposed an
algorithm for satisfactory large, but not necessarily maximal, toler-
ances. Note that the maximal tolerances need not exist, so we will
speak more about supremal tolerances instead. Sitarz [26] calcu-
lates an upper bound on the supremal additive tolerance. An exten-
sion to individual tolerances was given in [12]. So far, there has
been no method known for computing the supremal tolerances,
only the afore-mentioned lower and upper bounds. Herein, we
present such an algorithm to compute the supremal tolerances.
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The paper is organized as follows. After some preliminaries
(Section 2) we propose a formula to compute the supremal toler-
ances in terms of an optimization problem (Section 3). In Section
3.2 we show how to practically solve the optimization problem
by decomposing into orthants; a reduction method for the number
of orthants to be inspected is proposed, too. A procedure to test
whether the calculated supremal tolerance is also the maximal
one is presented in Section 3.3. NP-hardness of determining the
maximal/supremal tolerance is proved in Section 3.1. Section 3.4
is concerned with an upper bound on the supremal tolerance by
using edges emerging from a given vertex. Some illustrative exam-
ples, an application in transportation problems and a limited
numerical study is given in Section 3.5. In Section 4, we extend
the tolerance analysis problem to finding individual lower and
upper tolerances for the particular objective function coefficients,
and propose a method for calculating maximal individual toler-
ances. Section 5 concludes and states some open problems.

2. Preliminaries and problem statement

Let us introduce some notation first. By an interval matrix we
mean a family of matrices

½M;M� ¼ fM 2 Rm�n : M 6 M 6 Mg;

where M 6 M are given matrices, and relation6 is understood entry-
wise. The relation x “ y denotes in short that x P y and x – y, diag(v)
stands for the diagonal matrix with entries v1, . . . , vn, and sgn(v) for
the sign vector of a vector v. The ith row of a matrix A is denoted by
Ai�, and e = (1, . . . , 1)T is a vector of ones.

Consider a multiobjective linear programming problem

max Cx

s:t: Ax 6 b;
ð1Þ

where C 2 Rp�n; A 2 Rm�n and b 2 Rm. A feasible solution x⁄ is called
efficient if there is no feasible x such that Cx “ Cx⁄.

Now, let G P 0 be an p � n matrix and consider the interval ma-
trix [C � dG,C + dG] with parameter d > 0, and x⁄ an efficient solu-
tion to (1). A non-negative value d is called admissible tolerance if
x⁄ remains efficient for all C0 2 [C � dG,C + dG]. Herein, G represents
perturbation scales for objective function coefficients. It is usually
set up as Gij = jCijj for relative (percentage) tolerances, Gij = 1 for
additive tolerances, and Gij = 0 in case when perturbation of Cij is
not in interest. However, they can be set up in any other way
according to the decision maker preferences and importances of
particular coefficients.

Our aim is to calculate the maximal admissible tolerance of an
efficient solution x⁄. We impose no other assumption on x⁄, that is,
it may be basic or non-basic, degenerate or non-degenerate, and it
may be an extreme point or not. Thus, our approach is independent
on the solution method used for calculating x⁄.

Formally, we define and denote the maximal tolerance as
follows

dmax :¼ max d

s:t: x�is efficient 8C0 2 ½C � dG; C þ dG�; d P 0:

Note that the maximal tolerance need not exist; see Example 1. That
is why we focus more on calculation of the supremal tolerance

dsup :¼ sup d

s:t: x� is efficient 8C 0 2 ½C � dG;C þ dG�; d P 0:

Once the supremal tolerance dsup is computed, dsup � e is an admis-
sible tolerance for arbitrarily small e > 0, but dsup itself may not be
admissible.

3. Maximal and supremal tolerances

Let x⁄ be a feasible solution and I(x⁄) = {i; Ai�x = bi} its active set.
The tangent cone at x⁄ is described

Ai�ðx� x�Þ 6 0; i 2 Iðx�Þ:

For simplicity, we denote the system by A1(x � x⁄) 6 0. It is known
[6] that x⁄ is efficient iff there is no dominated solution within the
tangent cone, that is, the system

A1ðx� x�Þ 6 0; Cðx� x�Þ “ 0; ð2Þ

or

A1ðx� x�Þ 6 0; Cðx� x�Þ ¼ y P 0; eT y ¼ 1 ð3Þ

has no solution. We utilize this characterization of efficiency to de-
rive more general robust characterization of efficiency in the fol-
lowing lemma, and to state our main computational result in the
sequel.

Lemma 1. Let x⁄ be an efficient solution to (1). Then x⁄ is efficient for
each C0 2 [C � dG,C + dG] iff the system

A1ðx� x�Þ 6 0; Cðx� x�Þ þ dGjx� x�j “ 0 ð4Þ

has no solution.

Proof. ‘‘Sufficiency.’’ Let C0 2 [C � dG,C + dG] and suppose that x⁄ is
not efficient for C0, that is, there is a solution x to

A1ðx� x�Þ 6 0; C0ðx� x�Þ “ 0:

Then x fulfills also

0'C 0ðx� x�Þ ¼ Cðx� x�Þ þ ðC 0 � CÞðx� x�Þ
6 Cðx� x�Þ þ jC 0 � Cjjx� x�j
6 Cðx� x�Þ þ dGjx� x�j:

‘‘Necessity.’’ Now, suppose that x solves (4). Putting

C0 :¼ C þ dG diag ðsgnðx� x�ÞÞ 2 ½C � dG;C þ dG�;

we get

C0ðx� x�Þ ¼ Cðx� x�Þ þ dG diag ðsgnðx� x�ÞÞðx� x�Þ
¼ Cðx� x�Þ þ dGjx� x�j “ 0:

Thus x⁄ is not efficient for C0. h

Theorem 1. Let x⁄ be an efficient solution to (1). Then

dsup ¼min d

s:t: A1ðx� x�Þ 6 0; Cðx� x�Þ þ dGjx� x�jP 0; ð5aÞ
eT Gjx� x�j ¼ 1; d P 0: ð5bÞ

Proof. By Lemma 1, x⁄ is efficient for each C0 2 [C � dG,C + dG] iff
the system (4) has no solution. Thus we seek the supremal d such
that the system (4) has no solution. Instead, we compute the infi-
mal d P 0 such that the system (4) has a solution, that is

inf d

s:t: A1ðx� x�Þ 6 0; Cðx� x�Þ þ dGjx� x�j “ 0; d P 0:
ð6Þ

Its equivalent form is (5). The reason is the following. Let (d,x) be a
feasible solution to (6). If eTGjx � x⁄j = 0 then Gjx � x⁄j = 0 and
C(x � x⁄) “ 0, meaning that x⁄ cannot be efficient. Otherwise, if

eTGjx � x⁄j > 0 then d; 1
eT Gjx�x�j ðx� x�Þ þ x�

� �
solves (5). Let (d,x) be
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