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a b s t r a c t

The theoretical relationship between the prediction variance of a Gaussian process model (GPM) and its
mean square prediction error is well known. This relationship has been studied for the case when deter-
ministic simulations are used in GPM, with application to design of computer experiments and metamod-
eling optimization. This article analyzes the error estimation of Gaussian process models when the
simulated data observations contain measurement noise. In particular, this work focuses on the correla-
tion between the GPM prediction variance and the distribution of prediction errors over multiple exper-
imental designs, as a function of location in the input space. The results show that the error estimation
properties of a Gaussian process model using stochastic simulations are preserved when the signal-to-
noise ratio in the data is larger than 10, regardless of the number of training points used in the metamod-
el. Also, this article concludes that the distribution of prediction errors approaches a normal distribution
with a variance equal to the GPM prediction variance, even in the presence of significant bias in the GPM
predictions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

A recurring question in metamodeling is how to assess the pre-
diction accuracy of the model. Even though a validation step is typ-
ically performed as part of the metamodel construction, the
question remains as to how accurate is the prediction of the model
at an untried sample point. Assume that the response of an expen-
sive simulation f can be described as ytr(x) = f(x), where the sub-
script tr denotes the true mean response of the simulation at x.
The approximate model of the expensive simulation, f̂ , predicts
the mean response at x as: yappðxÞ ¼ f̂ðxÞ. Therefore, the mean
square prediction error of the approximate model at x is:

d2ðxÞ ¼ ½ytrðxÞ � yappðxÞ�
2 ð1Þ

In the scenario of expensive simulations, a user may have limited
resources (i.e. limited number of simulations) for the training and
validation steps of the metamodel. This situation is more difficult
when the user is approximating stochastic simulations, since each
observed response y from the simulation is corrupted by a measure-
ment noise g around the mean response y(x) = ytr(x) + g. Because of
this scenario, researchers have looked for alternatives to obtain an
estimation of the prediction error that do not require additional
evaluations from the expensive simulation.

Gaussian process modeling (GPM) is one of the most popular
methods for constructing approximate models, not only because

of its flexibility and good prediction results, but also because it
has its own error estimation on the GPM prediction. According to
the theory of GPM, when the GPM structure is completely known
(that is, the true GPM parameter set, the true local correlation
structure and the true regression functions in the model are
known), the GPM prediction variance is an error estimator of the
mean square prediction error. In practice, the user has to make
decisions about the GPM structure, incurring an additional model
uncertainty factor that alters this theoretical property. Many of
the applications of GPM implement a ‘‘plug-in’’ version of the
Gaussian process, using an estimated parameter set. Santner
et al. (2003) called this version of GPM the empirical best linear
unbiased predictor. Several authors already mentioned this situa-
tion, suggesting that the GPM prediction variance of the empirical
GPM version is an underestimator of the ‘‘true’’ GPM prediction
variance (Cressie, 1993; den Hertog et al., 2006). These issues raise
questions about how to estimate the error in Gaussian process
models in practice.

Error estimation measures are useful for the assessment
of approximate models. In many applications, the success of
approximate models depends on the accuracy in the error
estimation. Error estimators are used to quantify the level of
uncertainty or ‘‘trust’’ in the prediction of an approximate
model, therefore indicating particular regions in the input space
where additional samples are required. Some examples include
improvement of design of experiments in the creation of
approximate models (Hernandez and Grover, 2010), and optimi-
zation of time-consuming computer simulations via black-box
models (Kleijnen et al., 2010).
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Early findings about error estimation of GPM were made by
Meckesheimer et al. (2002). They evaluate leave-k-out cross-
validation strategies as a procedure to assess the accuracy of
low-order polynomial functions, radial basis functions and kriging
models over the design space. Goel et al. (2009) presented a
detailed study on error estimation, evaluating response surfaces
and kriging models for six classical benchmark examples in the
statistics field. As a result of this last study, Goel et al. concluded
that local evaluations of GPM prediction variance can be used for
global error estimation of Gaussian process models. As relevant
as these results are in the error estimation of GPM, the studies
were limited to predictions of deterministic simulations.

The presence of noise in the observations incorporates an addi-
tional element in the GPM prediction that has been discussed pre-
viously in the literature. Kleijnen and coworkers have worked
extensively in the use of kriging models for random simulations
(Kleijnen et al., 2010; Kleijnen and van Beers, 2005; van Beers
and Kleijnen, 2003, 2008), using replicates at each sample point
to calculate sample means, and then treating those values as deter-
ministic outcomes in the GPM construction. In the area of error
estimation, the same group implemented a parametric bootstrap-
ping approach to calculate the mean square prediction error of
the GPM (den Hertog et al., 2006), but it was not used as an error
estimator in the approximate model and it was only employed
with deterministic simulations. A similar implementation of this
bootstrapping approach was also used to evaluate the uncertainty
of time-course experimental data in cell signaling pathways and
network topology of time-series gene expression data (Kirk and
Stumpt, 2009). Ankenman et al. (2010) extended Kleijnen’s GPM
for random simulations with their stochastic kriging model, which
models the intrinsic uncertainty, or noise, in the simulations with
an additional variance parameter for each sample point. Different
from these papers, where the major interest was the GPM mean
prediction, the work presented here focuses on the GPM prediction
variance and its role as an error estimator of the approximate mod-
el when stochastic observations are used in GPM.

2. Theory

Consider a set D of n input/output pairs {xi,y(xi)}, where
xi 2 Rd; yðxiÞ 2 R; i ¼ 1; . . . ;n. This set of input/output pairs will
be referred to as sample points or experimental points. Consider
also that the observed data y(xi) contains an additive measurement
noise g � N 0;r2

u

� �
along with the true response of the simulation

ytrðxiÞ 2 R. The subscript u represents the uncorrelated nature of
the additive noise in each of the experimental points.

yðxiÞ ¼ ytrðxiÞ þ g ð2Þ

Despite the presence of noise in the observed data, the objective is
to predict the true response of the simulation ytr(x) at some other
point x.

2.1. Gaussian process model (GPM)

In a GPM, the set of unknown true responses of the simulations
are treated as random variables that are drawn from a joint Gauss-
ian distribution (Rasmussen and Williams, 2006). For the elements
in the set D, the mean function m(x) and the covariance matrix
K 2 Rn�n;Kij ¼ kðxi;xjÞ of the true response values ytr(xi) are de-
fined as

ytr � GPðm;KÞ ð3Þ

E½ytr � ¼ mðxÞ ¼ Hb ð4Þ

E½ðytr � HbÞðytr � HbÞT � ¼ K ð5Þ

where ytr ¼ ½ytrðx1Þ ytrðx2Þ . . . ytrðxnÞ�T ; ytr 2 Rn; H 2 Rn�p represents
a set of p regression or trend functions evaluated at the xi inputs
in D, and b 2 Rp are the p regression coefficients.

Based on the description of the observed data in Eq. (2), and the
multivariate distribution of the true response, the output/observed
information y(xi) in the set D can alternatively be drawn from a
multivariate Gaussian distribution as

y � GP m;K þ r2
uI

� �
ð6Þ

E½y� ¼ mðxÞ ¼ Hb ð7Þ
E½ðy � HbÞðy � HbÞT � ¼ K þ r2

uI ð8Þ

where y ¼ ½yðx1Þ yðx2Þ . . . yðxnÞ�T ; y 2 Rn and I 2 Rn�n is the identity
matrix.

The covariance matrix K can be constructed only after defining
the function k that models the correlation between the true values
of the residual. Basically, the correlation is described using the dis-
tance between sample points, with a monotonically decaying func-
tion. A common distance-based correlation function employed in
the GPM literature is

kðxi;xjÞ ¼ r2
c exp �1

2

Xd

a¼1

ðxi;a � xj;aÞ2

‘2
a

" #
ð9Þ

where h ¼ ‘2
1 . . . ‘2

d;r2
c ;r2

u

� �
are the parameters that control the fea-

tures of the correlation between samples in the GPM. The subscript
c is used to describe a correlated variance in the model that is
weighted using the distance-based correlation function. Based on
this correlation function, the GPM can also be understood as an
empirical model that uses a positive-definite function to model
the correlation between the residuals of a linear-in-parameters
model and the true responses (Cressie, 1993; Koehler and Owen,
1996).

The mathematical description of GPM as a regression model can
be obtained by solving a constrained optimization problem for the
best linear unbiased predictor and its mean square error (Goldber-
ger, 1962). This constrained optimization problem is solved using
the method of Lagrange multipliers, and its solution is known as
the best linear unbiased predictor (BLUP), which corresponds to:

ŷðx;DÞ ¼ hTðxÞb̂þ kTðx;DÞ K þ r2
uI

� ��1½y � Hb̂� ð10Þ

where kðx;DÞ 2 Rn is the correlation vector between x and each of
the xi samples in D using a correlation function such as the one in
Eq. (9); h 2 Rp represents a set of p regression functions evaluated
at x and

b̂ðhÞ ¼ HT K þ r2
uI

� ��1
H

� ��1
HT K þ r2

u I
� ��1

y ð11Þ

is the generalized least-squares estimator of the regression coeffi-
cients. Similarly, the GPM prediction variance of the linear predictor
is calculated as

r2
y x;Dð Þ ¼ kðx;xÞ � ½hTðxÞ kTðx;DÞ� 0 HT

H K þ r2
u I

" #�1
hðxÞ

kðx;DÞ

� �

ð12Þ

where k(x, x) is the evaluation of the correlation function between
the unknown point and itself. It is also important to notice that in
the original description of this constrained optimization (Goldber-
ger, 1962), Goldberger did not specify a correlation function to de-
scribe the regression covariance matrix. Goldberger does not
describe the nature of the observations to be either deterministic
or stochastic. This means that either y or ytr can be used in the
GPM equations. When the deterministic simulations ytr are used
in GPM, the parameter r2

u has a value of 0, and Eqs. (10)–(12) are
modified accordingly.
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